Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 1 | 115--133
Tytuł artykułu

Performance evaluation of the suspension system on Maglev trains based on measurement data

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to ensure the safe operation of electromagnetic suspension (EMS) maglev trains, it is necessary to pay attention to the control loop performance of the suspension system. The suspension system with closed-loop control is tuned to achieve excellent performance at its early stage of operation. After running for a period of time, the control loop may encounter problems e.g., degraded operation, and paralysis may occur in severe cases. In order to quantify the control performance of the suspension system in an explicable manner, this paper proposed a data-driven control loop performance evaluation method based on fractal analysis, which does not require any external sensors and can be applied without data source restrictions such as dimension, volume and resolution. The control loop performances of such suspension systems were monitored, analysed, and evaluated by cross-sectional study, based on the field data of a commercial operation line in the commissioning stage. Furthermore, the track condition was revealed by capturing performance changes of the suspension system running on different guideway girders. The results demonstrate that the proposed method enables early warning of the degeneration of the suspension systems and the track.
Wydawca

Rocznik
Strony
115--133
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wzory
Twórcy
autor
  • National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China
autor
  • Institute of Rail Transit, Tongji University, Shanghai 201804, China
autor
  • National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China, junqixu@tongji.edu.cn
autor
  • National Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China
  • Thyssenkrupp Transrapid GmbH, Munich 80809, Germany
Bibliografia
  • [1] Harris, T. J. (1989). Assessment of control loop performance. Canadian Journal of Chemical Engineering, 67(5), 856-861. https://doi.org/10.1002/cjce.5450670519
  • [2] Kamrunnahar, M., Fisher, D. G., & Huang, B. (2004). Performance assessment and robustness analysis using an ARMarkov approach. Journal of Process Control, 14(8), 915-925. https://doi.org/10.1016/j.jprocont.2003.12.009
  • [3] Liu, C., Huang, B., & Wang, Q. (2011). Control performance assessment subject to multi-objective user-specified performance characteristics. IEEE Transactions on Control Systems Technology, 19(3), 682-691. https://doi.org/10.1109/TCST.2010.2051669
  • [4] Domański, P. D. (2018). Statistical measures for proportional-integral-derivative control quality: Simulations and industrial data. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(4), 428-441. https://doi.org/10.1177/0959651817754034
  • [5] Wang, J., & Zhao, C. (2021). A probabilistic framework with concurrent analytics of Gaussian process regression and classification for multivariate control performance assessment. Journal of Process Control, 101, 78-92. https://doi.org/10.1016/j.jprocont.2021.03.007
  • [6] Rote, D. M., & Cai, Y. G. (2002). Review of dynamic stability of repulsive-force maglev suspension systems. IEEE Transactions on Magnetics, 38(2), 1383-1390. https://doi.org/10.1109/20.996030
  • [7] Xiao, J. Z., Jian, J. W., & Zhou, Y. H. (2005). Effect of spring non-linearity on dynamic stability of a controlled maglev vehicle and its guideway system. Journal of Sound and Vibration, 279(1-2), 201-215. https://doi.org/10.1016/j.jsv.2003.10.025
  • [8] Zhang, L., Huang, L., & Zhang, Z. (2009). Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dynamics, 57(1-2), 197-207. https://doi.org/10.1007/s11071-008-9432-5
  • [9] Shi, J., Wei, Q., & Zhao, Y. (2007). Analysis of dynamic response of the high-speed EMS maglev vehicle/guideway coupling system with random irregularity. Vehicle System Dynamics, 45(12), 1077-1095. https://doi.org/10.1080/00423110601178441
  • [10] Yau, J. D. (2010). Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion. Journal of Sound and Vibration, 329(2), 171-188. https://doi.org/10.1016/j.jsv.2009.08.038
  • [11] Wang, B., Zhang, Y., Xia, C., Li, Y., & Gong, J. (2022). Dynamic analysis of high-speed maglev train-bridge system with fuzzy proportional-integral-derivative control. Journal of Low Frequency Noise Vibration and Active Control, 41(1), 374-386. https://doi.org/10.1177/14613484211029133
  • [12] Sinha, P. K., & Pechev, A. N. (1999). Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica, 35(8), 1457-1465. https://doi.org/10.1016/S0005-1098(99)00040-0
  • [13] Jeong, J.-H., Ha, C.-W., Lim, J., & Choi, J.-Y. (2016). Analysis and control of the electromagnetic coupling effect of the levitation and guidance systems for a semi-high-speed MAGLEV using a magnetic equivalent circuit. IEEE Transactions on Magnetics, 52(7). https://doi.org/10.1109/TMAG.2015.2506681
  • [14] Sun, Y., Xu, J., Wu, H., Lin, G., & Mumtaz, S. (2021). Deep learning based semi-supervised control for vertical security of maglev vehicle with guaranteed bounded airgap. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4431-42. https://doi.org/10.1109/TITS.2020.3045319
  • [15] Teklu, E. A. & Abdissa, C. M. (2023). Genetic algorithm tuned super twisting sliding mode controller for suspension of maglev train with flexible track. IEEE Access, 11, 30955-30969. https://doi.org/10.1109/ACCESS.2023.3262416
  • [16] Bosera, A. S., Olana, F. D., Merga, C. & Gutole, S. T. (2022). Adaptive PSO based gain optimization of sliding mode control for position tracking control of magnetic levitation systems, 2022 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), Bahir Dar, Ethiopia, 157-162. https://doi.org/10.1109/ICT4DA56482.2022.9971197
  • [17] Yu, P. C., Li, J., & Zhou, D. F. (2016). A performance assessment method for suspension control system of maglev train. 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China. https://doi.org/3509.10.1109/CCDC.2016.7531590
  • [18] Ding, J. F., Liang, S. & Long, Z. Q. (2019). Research on performance evaluation method of levitation control system for maglev train. Proceedings - 2019 Chinese Automation Congress (CAC), Hangzhou, China, 628-633. https://doi.org/10.1109/CAC48633.2019.8997517
  • [19] Song, Y. F., Ni, F., Lin, G. B., & Xu, J. Q. (2020). Data-driven control loop performance evaluation of electromagnetic levitation systems. 2020 Chinese Automation Congress (CAC), Shanghai, China, 502. https://doi.org/10.1109/CAC51589.2020.9326993
  • [20] Liu, X., Zhu, P., Li, Z., Fan, W. & Li, X. (2022). Performance evaluation of suspension control system based on minimum variance. 2022 5th International Conference on Data Science and Information Technology (DSIT), Shanghai, China, 1-5. https://doi.org/10.1109/DSIT55514.2022.9943976
  • [21] Xu, Y., Long, Z., Zhao, Z., Zhai, M., & Wang, Z. (2022). Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: A data-driven approach. IEEE Transactions on Intelligent Transportation Systems, 23(3), 1912-1923. https://doi.org/10.1109/TITS.2020.3029905
  • [22] Liu, X., Zhu, P., Li, Z., Liang, S., & Li, X. (2022). Performance evaluation of maglev train suspension system based on data drive. 2022 34th Chinese Control and Decision Conference (CCDC), Piscataway, NJ, USA, 1763-1768. https://doi.org/10.1109/CCDC55256.2022.10034332
  • [23] Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799. https://doi.org/10.1061/taceat.0006518
  • [24] Mandelbrot, B. B., & Wallis, J. R. (1969). Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5(5), 967-988. https://doi.org/10.1029/WR005i005p00967
  • [25] Chen, Z., Hu, K., Carpena, P., Bernaola-Galvan, P., Stanley, H. E., & Ivanov, P. C. (2004). Effect of nonlinear filters on detrended fluctuation analysis. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(1). https://doi.org/10.1103/PhysRevE.71.011104
  • [26] Srinivasan, B., Spinner, T., & Rengaswamy, R. (2012). Control loop performance assessment using detrended fluctuation analysis (DFA). Automatica, 48(7), 1359-1363. https://doi.org/10.1016/j.automatica.2012.04.003
  • [27] Das, L., Srinivasan, B., & Rengaswamy, R. (2016). Multivariate control loop performance assessment with Hurst exponent and Mahalanobis distance. IEEE Transactions on Control Systems Technology, 24(3), 1067-1074. https://doi.org/10.1109/TCST.2015.2468087
  • [28] Domański, P. D., & Ławryńczuk, M. (2017). Assessment of predictive control performance using fractal measures. Nonlinear Dynamics, 89(2), 773-790. https://doi.org/10.1007/s11071-017-3484-3
  • [29] Domański, P. D. (2019). Control quality assessment using fractal persistence measures. Isa Transactions, 90, 226-234. https://doi.org/10.1016/j.isatra.2019.01.008
  • [30] Khosroshahi, M., & Poshtan, J. (2021). Data-driven performance assessment of multivariable control loops using a modified Hurst exponent-based index. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235(6), 769-780. https://doi.org/10.1177/0959651820966523
  • [31] Liu, Z., Long, Z., & Li, X. (2015). Maglev Trains. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45673-6
  • [32] Jing, H., & Yang, L. (2017). Research on Window Function Selection in Phase Estimation of Digital Signal. 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT), Taiyuan, People’s Republic of China, 130, 1162-1165. https://doi.org/10.2991/fmsmt-17.2017.228
  • [33] Wang, J. Y., Gu, C. C., & Liu, K. C. (2022). Anomaly electricity detection method based on entropy weight method and isolated forest algorithm. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.984473
Uwagi
The authors gratefully acknowledge the financial support from the Natural Science Foundation of
Shanghai (21ZR1466900) and the National Natural Science Foundation of China (52232013).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d61d60eb-ceb4-44d6-a40a-65657063de0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.