Warianty tytułu
Języki publikacji
Abstrakty
This study aims to investigate and compare the thermal performance of a solar air heater using a passive technique to enhance heat transfer between the absorber plate and the flowing fluid. The technique involves generating turbulence near the heat transferring surface through the use of artificial rib roughness. The study focuses on two different novel roughness geometries: full symmetrical arc rib roughness and half symmetrical arc rib roughness. By introducing additional gaps and varying the number of gaps in the roughness geometries, the study examines their effects on the solar air heaters thermal performance. The artificially roughened surface creates different turbulent zones, which are essential to the development of different types of turbulence in the vicinity of the heat transferring surface. The study finds that an optimal escalation in Nusselt number and friction factor by 2.36 and 3.45 times, respectively, occurs at certain gap numbers as 6 and ng as 5 for full symmetrical arc rib roughness. The maximum thermal-hydraulic performance parameter of 1.66 is attained at a Reynolds number of 6 000. The study also conducts correlation, mathematical modeling, and performance prediction under different operating circumstances.
Czasopismo
Rocznik
Tom
Strony
33--44
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
Bibliografia
- [1] Haldar, A., Varshney, L., & Verma, P. (2022). Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD. Renewable Energy, 184, 266-279. doi: 10.1016/j.renene.2021.11.088
- [2] Bhuvad, S.S., Azad, R., & Lanjewar, A. (2022). Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renewable Energy, 185, 403–415. doi:10.1016/j.renene.2021.12.037
- [3] Arunkumar, H.S., Kumar, S., & Vasudeva Karanth, K. (2022). Performance enhancement of a solar air heater using rectangular perforated duct inserts. Thermal Science and Engineering Progress, 34, 101404. doi: 10.1016/j.tsep.2022.101404
- [4] Sureandhar, G., Srinivasan, G., Muthukumar, P., & Senthilmurugan, S. (2022). Investigation of thermal performance in a solar air heater having variable arc ribbed fin configuration. Sustainable Energy Technologies and Assessments, 52(PA), 102069. doi:10.1016/j.seta.2022.102069
- [5] Dheeraj Kumar, A.L. (2022). Nusselt number and friction characteristics of solar air heater roughened with novel twisted Vshaped staggered ribs using liquid crystal thermography. Renewable Energy, 110, 131932. doi: 10.1016/j.renene.2022.11.007
- [6] Ravi, R.K., & Saini, R.P. (2016). Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs. Energy, 116, 507–516. doi:10.1016/j.energy.2016.09.138
- [7] Ravi, R.K., & Saini, R.P. (2018). Nusselt number and friction factor correlations for forced convective type counter flow solar air heater having discrete multi V shaped and staggered rib roughness on both sides of the absorber plate. Applied Thermal Engineering, 129, 735–746. doi: 10.1016/j.applthermaleng.2017.10.080
- [8] Abbas, S., Yuan, Y., Hassan, A., Zhou, J., Ji, W., Yu, T., Rehman, U.U., & Yousuf, S. (2022). Design a low-cost, mediumscale, flat plate solar air heater: An experimental and simulation study. Journal of Energy Storage, 56, 105858. doi:10.1016/j.est.2022.105858
- [9] Zhang, Q., Wang, T., Hou, Q., Song, K., & Hu, W. (2022). Case Studies in Thermal Engineering Thermal hydraulic performance augmentation by petal-shaped ribs in a two-pass cooling channel. Case Studies in Thermal Engineering, 40, 102542. doi:10.1016/j.csite.2022.102542
- [10] Ayalew, Y.G. (2022). Experimental Investigation of Heat and Fluid Flow Characteristics on Expanded Metal Mesh Roughened Solar Collector. Trends in Sciences, 19(22).
- [11] Salih, H.M. (2022). A comparative study for double pass solar air collector utilizing medial glass panel. Archive of Mechanical Engineering, 69(4), 729–747. doi: 10.24425/ame.2022.141524
- [12] Jain, P.K., & Lanjewar, A. (2022). Experimental study of thermal augmentation in solar air heater roughened with aligned gaps in V-rib roughness with staggered element geometry. Heat and Mass Transfer, 58(4), 531–559. doi: 10.1007/s00231-021-03118-6
- [13] Patel, L.A., & Singh, S. (2019). Experimental and numerical investigation of solar air heater with novel V rib. Journal of Energy Storage, 21.
- [14] Karwa, R. (2003). Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, v-continuous and v-discrete pattern. International Communications in Heat and Mass Transfer, 30(2), 241–250. doi: 10.1016/S0735-1933(03)00035-6
- [15] Saini, S.K., & Saini, R.P. (2008). Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy, 82(12), 1118–1130. doi: 10.1016/j.solener.2008.05.010
- [16] Singh, A.P., Goel, V., Vashishtha, S., & Kumar, A. (2016). Heat Transfer Enhancement in a Solar Air Heater with Roughened Duct Having Arc-Shaped Elements as Roughness Element on the Absorber Plate. Journal of the Institution of Engineers: Series C,97(3), 381–388. doi: 10.1007/s40032-016-0240-2
- [17] Hans, V.S., Gill, R.S., & Singh, S. (2017). Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs. Experimental Thermal and Fluid Science, 80, 77–89. doi: 10.1016/j.expthermflusci.2016.07.022
- [18] Gill, R.S., Hans, V.S., Saini, J.S., & Singh, S. (2017). Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct. Renewable Energy, 104, 148–162. doi: 10.1016/j.renene.2016.12.002
- [19] Jain, S.K., Agrawal, G.D., & Misra, R. (2020). Experimental investigation of thermohydraulic performance of the solar air heater having arc-shaped ribs with multiple gaps. Journal of Thermal Science and Engineering Applications, 12(1), 1–10. doi:10.1115/1.4044427
- [20] Azad, R., Bhuvad, S., & Lanjewar, A. (2021). Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach. International Journal of Thermal Sciences, 167, 107013. doi: 10.1016/j.ijthermalsci.2021.10701
- [21] Ambade, J., & Lanjewar, A. (2019). Experimental investigation of solar air heater with new symmetrical GAP ARC GEOMETRY and staggered element. International Journal of Thermal Sciences, 146, 106093. doi: 10.1016/j.ijthermalsci.2019.106093
- [22] Jain, P.K., Lanjewar, A., & Bhagoria, J.L. (2022). Heat transfer analysis of double discrete arc roughness with different relative rib altitudes and relate to a single discrete arc in the solar air heater. International Journal of Ambient Energy, 43(1),6806-6828. doi: 10.1080/01430750.2022.2052959
- [23] Singh, A.P., Varun, & Siddhartha. (2014). Effect of artificial roughness on heat transfer and friction characteristics having multiple arc shaped roughness element on the absorber plate. Solar Energy, 105, 479–493. doi: 10.1016/j.solener.2014.04.007
- [24] Agrawal, Y., Bhagoria, J.L., Gautam, A., Kumar Chaurasiya, P., Arockia Dhanraj, J., Muthiya Solomon, J., & Salyan, S. (2022). Experimental evaluation of hydrothermal performance of solar air heater with discrete roughened plate. Applied Thermal Engineering, 211, 118379. doi: 10.1016/j.applthermaleng.2022.118379
- [25] Pandey, N.K., Bajpai, V.K., & Varun. (2016). Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Solar Energy, 134, 314-326. doi: 10.1016/j.solener.2016.05.007
- [26] Kumar, R., Goel, V., Singh, P., Saxena, A., Kashyap, A.S., & Rai, A. (2019). Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. Journal of Energy Storage, 26, 100978. doi: 10.1016/j.est.2019.100978
- [27] ASHRAE. (1977). Standard, Method of Testing to Determine the Thermal Performance of Solar Collector (93–97). ASHRAE.
- [28] Kline, S.J., & McClintock, F. (1953). Describing uncertainties in single sample. Mechanical Engineering, 75, 3–8.
- [29] Rosenhow, W.M., & Hartnett, J.P. (1973). Handbook of Heat Transfer. Mc Graw Hill. New York.
- [30] Bhatti, M.S., & Shah, R.K. (1987). Turbulent and transition flow convective heat transfer. In Handbook of Single-Phase Convective Heat Transfer (pp. 4.1–4.166). Wiley. doi: 10.1016/0255-2701(88)87007-7
- [31] Webb, R.L., & Eckert, E.R.G. (1972). Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer, 15(9), 1647–1658. doi: 10.1016/0017-9310(72)90095-6
- [32] Nikuradse, J. (1950). Laws of Flow in Rough Pipes. NACA, Technical Memorandum 1292. doi: 10.1016/s0882-6110(18)30184-6
- [33] Dipprey, D.F., & Sabersky, R.H. (1963). Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. International Journal of Heat and Mass Transfer, 6(5), 329–353. doi: 10.1016/0017-9310(63)90097-8
- [34] Klein, S.A. (2018). Calculation of flat-plate collector loss coefficients. In Renewable Energy, Chapter 29 (1st ed.). Routlegde. London. doi: 10.4324/9781315793245
- [35] McAdams, W.H. (1954). Heat Transmission. McGraw Hill. New York.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5f328dc-5a1a-48e4-96c1-3b19400de125