Czasopismo
2012
|
Vol. 60, nr 4
|
699--706
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Nitrogen is an essential nutrient for plant growth. Although much has been learned about its utilization and distribution within the plant body, little is known about the relationship between nitrogen content and standing biomass at the level of entire forests. Data for nitrogen content (N) and biomass (M) of 10 deciduous species in USA at the individual trees level and 37 species grown in three forest biomes (i.e. tropic, subtropics, and temperate) in China at stands level were gathered to determine the N versus M scaling relationships for different tissue- and organ-types (e.g. bark and leaves). Model Type II regression protocols were used to calculate scaling exponents and allometric constants (i.e. slopes and y-intercepts of log-log bivariate plots, respectively) between N and M to. At the level of individual plants, N scaled nearly isometrically with M for the different tissue- and organ-types (i.e. N [proportionality] M [0.97–1.04]). At the stand-level, N scaled similarly with respect to leaf, branch, and bark M, despite differences in stand size-frequency distributions and species composition. However, total stand N scaled allometrically with respect to total stem or root M and thus to total stand mass (i.e. N [proportionality] M[T] [0.77–0.87]). This was attributed to the accumulation of wood (and other ‘necromass’ tissue components that have lower N content than physiologically active tissues) in progressively older (and thus more massive) tree stands. When coupled to the scaling of N with respect to annual plant growth rates, these exponents provide important boundary conditions with which to model forest nutrient cycling.
Czasopismo
Rocznik
Tom
Strony
699--706
Opis fizyczny
Bibliogr. 35 poz., il.
Twórcy
autor
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China, chengdl02@yahoo.com.cn
autor
- College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China
Bibliografia
- 1. Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B. 2004 – Towards a metabolic theory of ecology – Ecology, 85: 1771–1789.
- 2. Burton A.J., Pregitzer K.S., Ruess R.W., Hendrick R.L., Allen M.F. 2002 – Root respiration in north American forests: effects of nitrogen concentration and temperature across biomes – Oecologia, 131: 559–568.
- 3. Calder W.A. 1984 – Size, Function and Life History – Cambridge, MA, USA, Harvard University Press, 421 pp.
- 4. Chen L.Z., Huang J.H., Yan C.R. 1999 – Nutrient cycling of Chinese forest ecosystem - Beijing, PRC, China Meteorological Press, 233 pp.
- 5. Cheng D.L., Niklas K.J. 2007 – Above- and below-ground biomass relationships across 1534 forested communities – Ann. Bot. 97: 95–107.
- 6. Cunningham S.A., Summerhayes B., Westoby M. 1999 – Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients – Ecol. Monog. 69: 569–588.
- 7. Elser J.J., Fagan W.F., Kerkhoff A.J., Enquist B.J. 2010 – Biological stoichiometry of plant production: metabolism, scaling, and ecosystem response to global change – New Phytol. 186: 593–608.
- 8. Field C., Mooney H.A. 1986 – The photosynthesis-nitrogen relationship in wild plants (In: On the economy of plant form and function, Ed: T.J. Givnish) – New York, NY, USA, Cambridge University Press, pp. 25
- 9. Kerkhoff A.J., Enquist B.J. 2006 – Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities – Ecol. Lett. 9: 419–427.
- 10. Li H.T., Han X.G., Wu J.G. 2005 – Lack of evidence for 3/4 scaling of metabolism in terrestrial plants – J. Integr. Plant Biol. 47: 1173–1183.
- 11. Machado J.L., Reich P.B. 2006 – Dark respiration rate increases with plant size in saplings of three temperate tree species despite decreasing tissue nitrogen and nonstructural carbohydrates – Tree Phys. 26: 915–923.
- 12. Maier C.A., Zarnoch S.J., Dougherty P.M. 1998 – Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine - Pinus taedu - plantation – Tree Phys. 18: 11–20.
- 13. Marquet P.A., Quiñones R.A., Abades S., Labra F., Tognelli M., Arim M., Rivadeneira M. 2005 – Scaling and powerlaws in ecological systems – J. E xp. Biol. 208: 1749–1769.
- 14. Martin J.G., Kloeppel B.D., S chaefer T.L., Kimbler D.L., McNuIty S.G. 1998 - Abovegro und biomass and nitrogen allocation of ten deciduous southern Appalachian tree species – Can. J. Forest Res. 28: 1648–1659.
- 15. Meerts P. 2002 – Mineral nutrient concentrations in sapwood and heartwood: a literature review – Ann. For. Sci. 59: 713–722.
- 16. Muller-Landau H.C., Condit R.S., Chave J., Thomas S.C., Bohlman S.A., Bunyavejchewin S., Davies S., Foster R., Gunatilleke S., Gunatilleke N. et al. 2006 – Testing metabolic ecology theory for allometric scaling of tree size, growth, and mortality in tropical forests – Ecol. Lett. 9: 575–588.
- 17. Niklas K.J. 1994 – Plant allometry: the scaling of form and process – Chicago, IL, USA, University of Chicago Press, 395 pp.
- 18. Niklas K.J. 2004 – Plant allometry: is there a grand unifying theory? – Biol. Rev. 79: 871–889.
- 19. Niklas K.J., Enquist B.J. 2001– Invariant scaling relationships for interspecific plant biomass production rates and body size – Proc Nat Acad Sci USA, 98: 2922–2927.
- 20. Niklas K.J., Owens T., Reich P.B., Cobb E.D. 2005– Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth – Ecol. Lett. 8: 636–642.
- 21. Reich P.B., Walters M.B., Ellsworth D.S. 1992 – Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems – Ecol. Monogr. 62: 365–392.
- 22. Reich P.B., Oleksyn J. 2004 – Global patterns of plant leaf N and P in relation to temperature and latitude – Proc. Nat. Acad. Sci. USA 101: 11001–11006.
- 23. Reich P.B., Tjoelker M.G., Machado J.L., Oleksyn J. 2006 – Universal scaling of respiratory metabolism, size and nitrogen in plants - Nature, 439: 457–461.
- 24. Reich P.B., Tjoelker M.G., Pregitzer K.S., Wright I.J., Oleksyn J, Machado J.L. 2008 – Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants - Ecol. Lett. 11: 793–801.
- 25. Reich P.B., Walters M.B., Ellsworth D.S. 1992 – Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems – Ecol. Monogr. 62: 365–392.
- 26. Reich P.B., Walters M.B., Tjoelker M.G., Vanderklein D., Buschena C. 1998 – Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate – Func . Ecol. 12: 395–405.
- 27. Ryan M.G. 1991 – Effects of climate change on plant respiration – Ecol . Appl. 1: 157–167.
- 28. Swift L.W., Cunningham G.B., Douglass J.E. 1988 – Climatology and hydrology (In: Forest hydrology and ecology at Coweeta, Stud. 66, Eds: W.T. Swank, D.A. Crossley Jr Ecol.) – Springer-Verlag, New York. pp. 35–55.
- 29. Sokal R.R., Rohlf F.J. 1981 – Biometry – New York, NY, USA: Freedman & Co, 859 pp.
- 30. Thompson K., Parkinson J.A., Band S., Spencer R.E. 1997 – A compa rative study of leaf nutrient concentrations in a regional herbaceous flora – New Phytol. 136: 679–689.
- 31. Turner J., Cole D.W., Gessel S.P. 1977 – Methods employed in forest nutrient cycling studies at Cedar River – International Reports #163.
- 32. West G.B., Brown J.H., Enquist B.J. 1997 - A general model for the origin of allometric scaling laws in biology – Science, 276: 122–126.
- 33. West G.B., Brown J.H., Enquist B.J. 1999 - A general model for the structure and allometry of plant vascular systems – Nature, 400: 664–667.
- 34. Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M. et al. 2004 – The worldwide leaf economics spectrum – Nature, 428: 821–827.
- 35. Yang Y.H., Luo Y.Q. 2011 – Carbon: nitrogen stoichiometry in forest ecosystems during stand development – Global Ecol. Biogeogr. 20: 354–361.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5ea8ac7-76af-475e-b64a-65d21ffa8955