Warianty tytułu
Influence of the ageing temperature on the microstructure and selected mechanical properties of Ti24Nb4Zr8Sn alloy
Języki publikacji
Abstrakty
Celem pracy była ocena mikrostruktury i wybranych własności mechanicznych stopu Ti24Nb4Zr8Sn w stanie po przesycaniu, tj. oziębianiu w wodzie z wybranej temperaturze wygrzewania (800°C) i starzeniu w zakresie temp. 350–600°C. Wyniki badań wskazały na obecność w mikrostrukturze stopu fazy β w stanie przesyconym oraz wydzieleń fazy α, począwszy od temperatury starzenia 400°C. Twardość próbek stopu wyznaczono w stanie po przesycaniu oraz w całym zakresie temperatur starzenia. W stanie przesyconym (oziębionym w wodzie od 800°C) odnotowano minimalną twardość stopu, tj. 236 HV, której odpowiadała największa odporność na pękanie (KV = 109,5 J). Wraz ze wzrostem temperatury starzenia w zakresie 350–600°C obserwowano spadek odporności na pękanie stopu. Wykazano, że w stanie po przesycaniu oraz przesycaniu i starzeniu przełomy próbek są quasi-kruche, o różnym udziale objętościowym przełomu międzykrystalicznego i transkrystalicznego.
The aim of the study was to evaluate the microstructure and selected mechanical properties of the Ti24Nb4Zr8Sn alloy in the state after supersaturation, i.e. cooling in water from the selected annealing temperature (800°C) and ageing in the temperature range 350–600°C. The test results indicated the presence of the β phase in the supersaturated state in the alloy microstructure and the α phase precipitates – starting from the ageing temperature of 400°C. The hardness of the alloy samples was determined in the state after supersaturation and throughout the entire ageing temperature range. In the supersaturated state (cooled in water from 800°C), the minimum hardness of the alloy was recorded, i.e. 236 HV, which corresponds to the highest impact energy (KV = 109.5 J). A decrease in the fracture toughness of the alloy was observed with the increase in the ageing temperature in the range of 350–600°C. It has been shown that in the state after supersaturation, supersaturation and ageing, the fractures of the samples are quasi-brittle with a different volume fracture of the intercrystalline and transcrystalline fracture.
Czasopismo
Rocznik
Tom
Strony
9--15
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Wydział Inżynierii Metali i Informatyki Przemysłowej, AGH Akademia Górniczo- Hutnicza im. Stanisława Staszica w Krakowie, rdabrow@agh.edu.pl
Bibliografia
- [1] Geetha M., Singh A.K., Gogia A.K., Asokamani R.: Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys. Journal of Alloys and Compounds 384 (2004) 131–144.
- [2] Niinomi M.: Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 1/1 (2008) 30–42.
- [3] Jung T., Semboshi S., Masahashi N., Hanada S.: Mechanical properties and microstructures of β Ti-25Nb-11Sn ternary alloy for biomedical applications. Materials Science and Engineering (2013) 1629–1635.
- [4] Ninoomi M.: Materials for biomedical devices. Wood Head Publishing Limited (2010).
- [5] Sudhakar K.V., Konen K., Floreen K.: Beta-titanium biomedical alloy – effect of thermal processing on mechanical properties. Archives of Metallurgy and Materials 54/1 (2012) 397–425.
- [6] Yu Z.T., Zhang M.H., Tian Y.X., Cheng J., Ma X.Q., Liu H.Y., Wang C.: Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants. Front. Mater. Sci. 8/3 (2014) 219–229
- [7] Dąbrowski R., Krawczyk J., Rożniata E.: Influence of the ageing temperature on the microstructure and selected mechanical properties of Ti13Nb13Zr alloy. Key Engineering Materials 682 (2016) 24–30.
- [8] Rui Y., Hao Y., Li S.: Development and application of low-modulus biomedical titanium alloy Ti2448. Biomedical Engineering. Trends in Materials Science (2011) 225–248.
- [9] Zhang Y.W., Li S.J., Obbard E.G., Wang H., Wang S.C., Hao Y.L., Yang R.: Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with BCC crystal structure. Acta Materialia 59 (2010) 3081–3090.
- [10]Bai Y., Li S.J., Prima F., Hao Y.L., Yang R.: Electrochemical corrosion behaviour of Ti-24Nb-4Zr-8Sn alloy in a simulated physiological environment. Applied Surface Science 258 (2011) 4035–4040.
- [11] Hao Y., Li S., Sun S., Yang R.: Effect of Zr and Sn on Young’s modulus and superelasticity of Ti-Nb-based alloys. Material Science Engineering A 441 (2006) 112–118.
- [12] Ankem S., Greene C.A.: Recent developments in microstructure/property relationships of beta titanium alloys. Materials Science and Engineering A263 (1999) 127–131.
- [13] Hickman B.S.: The formation of omega phase in titanium and zirconium alloys. Journal of Materials Science 4 (1969) 554–563.
- [14] Wanhill R., Barter S.: Titanium alloys. Springer Briefs in Applied Sciences and Technology. Metallurgy and Microstructure 2 (2012) 5–10.
- [15] Dąbrowski R., Cios G., Krawczyk J.: Influence of the supersaturating temperature on the microstructure and hardness of Ti24Nb4Zr8Sn alloy. Key Engineering Materials 687 (2016) 55–61.
- [16] Layens C., Peters M.: Titanium and titanium alloys: fundamentals and applications. Wiley-VCH (2003).
- [17] Lütjering G., Williams J.C.: Titanium. Spinger–Verlag, Berlin, Heidelberg (2003).
- [18] Dąbrowski R., Krawczyk J., Rożniata E.: Influence of the ageing temperature on the selected mechanical properties of Ti6Al7Nb alloy. Key Engineering Materials 641 (2015) 120–123.
- [19] Joshi V.A.: Titanium alloys. An atlas of structure and fracture features (2006) 7–13.
- [20] Pacyna J.: Metaloznawstwo pękania stali narzędziowych. Metalurgia i Odlewnictwo 120 (1988).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5ea01a8-3069-4129-b69c-c9a8668aa1a6