Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | R. 95, nr 4 | 30--35
Tytuł artykułu

Theoretical investigations of the interaction of acoustic apparatus with technological environment working process

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Teoretyczne badania interakcji aparatury akustycznej z procesem pracy środowiska technologicznego
Języki publikacji
EN
Abstrakty
EN
The qualitative and quantitative transformation of the ultrasonic apparatus force action on the processing environment is presented. The features of the interaction of the ultrasonic apparatus with the technological environment with different rheological properties are investigated and determined. The criteria to assess the energy, power, acoustic and temporal parameters of the process are found. They also determine the ratio of the wave resistance of the cavity region to the initial resistance of the environment. The condition for the effective implementation of the cavitation process is proposed. The waves of the acoustic apparatus fluctuations and the environment are harmonized in a single phase space by minimizing energy consumption.
PL
Przedstawiono jakościowe i ilościowe oddziaływanie urządzenia ultradźwiękowego na środowisko robocze. Określono cechy interakcji aparatu ultradźwiękowego z otoczeniem technologicznym o różnych właściwościach reologicznych. Określono kryteria oceny parametrów energetycznych, mocy, akustycznych i czasowych procesu. Określają również stosunek oporu falowego obszaru wnęki do początkowej rezystancji otoczenia. Zaproponowano warunek skutecznej realizacji procesu kawitacji.
Wydawca

Rocznik
Strony
30--35
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
  • Department of Applied Hydro-Aeromechanics and Mechatronics National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Peremohy ave., Kyiv, Ukraine, 03056, iryna_bernyk@i.ua
  • Department of Applied Hydro-Aeromechanics and Mechatronics National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Peremohy ave., Kyiv, Ukraine, 03056
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland, waldemar.wojcik@pollub.pl
  • Taraz State University after M.Kh.Dulaty
Bibliografia
  • [1] Du T., Huang Ch., Wang Y. (2016). Numerical Model for Evolution of Internal Structure of Cloud Cavitation. ISROMAC-2016 (International Symposium on Transport Phenomena and Dynamics of Rotating Machinery). April - Hawaii, Honolulu, 10-15.
  • [2] Bernyk I., Luhovskyi O. Research and calculation of rational modes and parameters of an ultrasonic cavitator, IX International Conference “Heavy Machinery-HM 2017”, Zlatibor, 28 Jule – 1 July 2017, 109–112.
  • [3] Wu J., Nyborg W. L. Ultrasound, cavitation bubbles and their interaction with cells, Advanced Drug Delivery Reviews. 60 (2008), 1103–1116.
  • [4] Аhanin А. А. , Ilhamоv M. А. Dynamics of a gas bubble excited by impulses of compression and rarefaction in a liquid, RAS. (2002.), V. 382, № 2, 176-180.
  • [5] Gumerov N.A., Ohl C.-D., Akhatov I.S., Sametov S., Khasimullin M. Waves of acoustically induced transparency in bubbly liquids: theory and experiment, The Journal of the Acoustical Society of America, (2013), v. 133 (5), 3277–3286.
  • [6] Holykh R.N., Khmelev V.N., Khmelev S.S., Karzakova К.А. 2013. Identification of optimal regimes and conditions for ultrasonic cavitation treatment of high-viscosity liquids. Scientific and Technical Journal of the Volga Region, 2013 (2), 249-251.
  • [7] Shestakov S. D. 2010. Multibubble acoustic cavitation: mathematical model and physical similarity [Text]. Electronic Journal "Technical Acoustics", 2010 (14), 16.
  • [8] Itkulova Y. A., Abramova О. А. , Humerov N. А., Akhatov I.Sh. 2014. Modeling bubble dynamics in threedimensional potential flows on heterogeneous computer systems by the fast method of multipoles and the method of boundary elements. Computational methods and programming, 2014, V. 15, 239–257.
  • [9] Toegel R. Stefan Luther S., Lohse D. 2006. Viscosity Destabilizes Sonoluminescing Bubbles [Text]. Physical Review Letters, 2006, V.96, 114301-1 – 114301-4.
  • [10] Promtov M.A. 2008. Prospects of cavitation technologies for intensification of chemical-engineering processes [Text]. Vestnik Tambov gos.teh. University, 2008 (4), 861–869.
  • [11] Gallego-Juarez Juan A. 2010. High-power ultrasonic processing: recent developments and prospective advances/ Juan A. Gallego-Juarez, Physics Procedia, 2010, v. 3, 35–47.
  • [12] Luhovskyi О. F., Movchaniuk A. V., Bernyk І. М. 2011. Investigation of the sound field and technological capabilities of the resonant cavitator in the processing of liquid-dispersed media, Industrial hydraulics and pneumatics, 2011 (1), 44–47.
  • [13] Movchaniuk A. V., Hryshko І. А. 2014. Possibility of using a flow tube cavitator with high intensity of ultrasonic oscillations for liquid media processing, Vibration in technics and technology (2) 2014, 125-130.
  • [14] Bernyk I. 2016. Research parameters of ultrasound processing equipment dispersed in technological environment, Motrol. Commission of Motorization and Energetics in Agriculture 18 (3) (2016), 3–13.
  • [15] Rozyna E. Y. 2009. Sound-capillary method for determining the velocity of sound in a cavitating liquid, Acoustic journal, 2009, Vol. 8, №4, 51–58.
  • [16] Davydenko L. А. 2008. The characteristics of the medium and the acoustic field during cavitation, Articles of the Odessa Polytechnic University, Odessa, 2008, Vol. 1(29), P. 245–250.
  • [17] Syrotyuk M.G. 2008. Ultrasound Cavitation, Moskva.: Nauka, 2008, 270.
  • [18] Bernyk I. M., Luhovskyi О. F. 2014. The main parameters for establishing the influence of the technological environment on the working process of ultrasonic cavitation treatment, Vibration in technics and technology, 2014, №3 (75), 121–126.
  • [19] Margulis M. A., Margulis I. M. 2007. Dynamics of bubbles ensemble in cavitating liquid, Journal of physical chemistry, 2007, T. 81 (12), 2290-2295.
  • [20] Shestakov S. 2010. Multibubble acoustic cavitation: a mathematical model and physical similarity [Text], Electronic journal "Technical acoustics", 2010 (14), 16.
  • [21] Bernyk І. Luhovskyi O., Nazarenko I. 2016. Research staff process of interaction and technological environment in developed cavitation, Journal of Mechanical Engineering of the National Technical University of Ukraine “Kiev Polytechnical Institute” 76 (1) (2016).
  • [22] Kukharchuk V.V., Hraniak V.F., Vedmitskyi Y.G., Bogachuk V.V., and etc. "Noncontact method of temperature measurement based on the phenomenon of the luminophor temperature decreasing", Proc. SPIE 10031, 100312F (28 September 2016).
  • [23] Kukharchuk V.V., Bogachuk V.V., Hraniak V.F., Wójcik W., Suleimenov B., Karnakova G., "Method of magneto-elastic control of mechanic rigidity in assemblies of hydropower units", Proc. SPIE 10445, 104456A (7 August 2017).
  • [24] Andriy O. Semenov; Alexander V. Osadchuk; Iaroslav A. Osadchuk; Kostyantyn O. Koval; Maksym O. Prytula The chaos oscillator with inertial non-linearity based on a transistor structure with negative resistance // Proceedings of the International Conference Micro/Nanotechnologies and Electron Devices (EDM), 2016 17th International Conference of Young Specialists. 30 June-4 July 2016.
  • [25] Azarov O.D., Murashchenko O.G., Chernyak O.I., Smolarz A., Kashaganova G., "Method of glitch reduction in DAC with weight redundancy", Proc. SPIE 9816, 98161T (17 December 2015).
  • [26] Vasilevskyi, O.M. A frequency method for dynamic uncertainty evaluation of measurement during modes of dynamic operation, International Journal of Metrology and Quality Engineering, 6 (2), art. no. 202, (2015).
  • [27] Wojcik W., Cakala S., Kotyra A., et al., Analysis of the operation of an electrooptical Pockels effect sensor, Proc. SPIE, 3189 (1997), 110-121
  • [28] Vasilevskyi, O.M., Kucheruk, V.Y., Bogachuk, V.V. and etc. The method of translation additive and multiplicative error in the instrumental component of the measurement uncertainty, Proc. SPIE 10031, 1003127, (2016).
  • [29]  Pamuła H., Kłaczyński M., Pomiary hałasu generowanego przez elektrownie wiatrowe i ocena ich wpływu na środowisko, Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska IAPGOŚ; 6(2) (2016), 6974; DOI: 10.5604/20830157.1201320
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5e61b56-5fad-4527-b68a-f0c9997b2a76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.