Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 14, nr 4(42) | 61--74
Tytuł artykułu

Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined effect of inclusion of expanded graphite (Exp-G) on morphology, thermal, mechanical and flame retardant properties of PS, nitro-substituted polystyrene (N-PS) and amino-functional polystyrene (A-PS). FESEM showed exfoliated sheet morphology due to intercalation of N-PS and A-PS in expanded galleries. Tensile strength of A-PS materials (31.5-56.9 MPa) was higher than PS and N-PS. 10 % weight loss of A-PS nanocomposites (482-518 °C) was higher relative to pristine polymer and other nanocomposites. Cone calorimetry results revealed that there was lowering in PHHR of A-PS nanocomposites with 0.5 wt.% filler (428 kW/m2), while PS nanocomposites showed PHHR of 443 kW/m2.
Wydawca

Rocznik
Strony
61--74
Opis fizyczny
Bibliogr. 27 poz., wykr., rys., tab.
Twórcy
autor
  • Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan., asheesgreat@yahoo.com
autor
  • Nanosciences and Catalysis Division, National Centre For Physics, Quaid-i-Azam University Campus, 44000, Islamabad, Pakistan.
  • Department of Chemistry, Hazara University, Pakistan
autor
  • Department of Chemistry, Hazara University, Pakistan
autor
  • Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
Bibliografia
  • 1. Pluta M., Alexandre M., Blacher S., Dubois P., Jerome R.: Metallocene-catalyzed polymerization of ethylene in the presence of graphite, Structure and electrical properties of the composites, Polymer 42 (2001) 9293-9300.
  • 2. Celzard A., Krzesinska M., Begin D., Mareche J. F., Puricelli S., Furdin G.: Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon 40 (2002) 557-566.
  • 3. Zheng W. G., Wong S. C., Sue H. J.: Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 43 (2002) 6767-6773.
  • 4. Chen G. H., Wu D. J., Weng W. G., Yan W. L.: Preparation of Polystylene-Graphite Conducting Nanocomposites via Intercalation Polymerization. Journal of Applied Polymer Science 82 (2001) 2506-2513.
  • 5. Uhl F. M., Wilkie C. A.: Polystyrene/graphite nanocomposites: effect on thermal stability. Polymer Degradation and Stability 76 (2002) 111-122.
  • 6. Liu P. G., Gong K. C.: Synthesis and characterization of polyaniline intercalated graphite oxide composite. Acta Polymerica Sinica 4 (2000) 492-495.
  • 7. Pan Y. X., Yu Z. Z., Ou Y. C., Feng Y. P.: Preparation and properties of nylon 6/graphite nanocomposite. Acta Polymerica Sinica 1 (2001) 42-47.
  • 8. Xiao P., Xiao M., Liu P. G., Gong K. C.: Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite. Carbon 38 (2000) 626-628.
  • 9. Chen G. H., Wu D. J., Weng W. G., Yan W. L.: Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polymer Engineering and Science 41 (2001) 2148-2154.
  • 10. Panwar V., Kang B., Park J. O., Park S., Mehta R. M.: Study of dielectric properties of styreneacryloni- trile graphite sheets composites in low and high frequency region. European Polymer Journal 45 (2009) 1777-1784.
  • 11. Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45 (2007) 1558-1565.
  • 12. Sudhakara P., Kannan P., Obireddy K., Rajulu A. V.: Flame retardant diglycidylphenylphosphate and diglycidyl ether of bisphenol-A resins containing Borassus fruit fiber composites. Journal of Materials Science 46 (2011) 5176-5183.
  • 13. D. Konnicke, A. Kuhn, T. Mahrholz, M. Sinapius. ‘Polymer nanocomposites based on epoxy resin and ATH as a new flame retardant for CFRP: preparation and thermal characterization. Journal of Materials Science 46 (2011) 7046-7055.
  • 14. He Q. L., Song L., Hu Y., Zhou S.: Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. Journal of Materials Science 44 (2009) 1308-1316.
  • 15. Murariu M., Dechief A. L., Bonnaud L., Paint Y., Gallos A., Fontaine G., Bourbigot S., Dubois P.: The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability 95 (2010) 889-900
  • 16. Bian X. C., Tang J. H., Li Z. M., Lu Z. Y., Lu A.: Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam. Journal of Applied Polymer Science 104 (2007) 3347-3355.
  • 17. S. Peeterbroeck, F. Laoutid, J. M. Taulemesse, F. Monteverde, J. Lopez-Cuesta, J. B. Nagy, M.Alexandre, P. Dubois. Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites. Advanced Functional Materials 17 (2007) 2787-2791.
  • 18. Isitman N. A., Kaynak C.: Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polymer Degradation and Stability 95 (2010) 1523-1532.
  • 19. Lee Y. C. R., Kim S. C., Lee H., Jeong H. M., Raghu A. V., Reddy K. R., Kim B. K.: Graphite oxides as effective fire retardants of epoxy resin. Macromolecular Research 19 (2011) 66-71.
  • 20. Shi Y., Li L. J.: Chemically modified graphene: flame retardant or fuel for combustion. Journal of Materials Chemistry 21 (2011) 3277-3279.
  • 21. Wang X., Song L., Yang H., Lu H., Hu Y.: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Industrial & Engineering Chemistry Research 50 (2011) 5376-5383.
  • 22. Bao C. L., Guo Y., Yuan B., Hu Y., Song L.: Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. Journal of Materials Chemistry 22 (2012) 23057-23063.
  • 23. Wen-Pin W., Cai-Yuan P.: Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 45 (2004) 3987-3995.
  • 24. Guo-Hua C., Da-Jun W., Wen-Gui W., Bin H., Wen-li Y.: Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International 50 (2001) 980-985.
  • 25. Kausar A., Zulfiqar S., Sarwar M. I.: An investigation on new high performance Schiff base polyurethanes. High Performance Polymers 24 (2012) 125-134.
  • 26. Kausar A., Zulfiqar S., Sarwar M. I.: High performance segmented polyurethanes derived from a new aromatic diisocyanate and polyol. Polymer Degradation and Stability 98 (2012) 368-376.
  • 27. Wang J. Q., Han Z. D.: The combustion behavior of polyacrylate ester/graphite oxide composites. Polymer for Advance Technology 17 (2006) 335-340.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5c230e7-559c-40ca-b1c2-54b666030c7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.