Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e140, 2023
Tytuł artykułu

Microstructure and properties of AlCr and AlCrFe coatings deposited by magnetron sputtering

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, AlCr and AlCrFe coatings were deposited via magnetron sputtering on technical substrates of carbon steel C45 and titanium grade 2. The coatings feature an amorphous structure, a thickness of 3-4 μm, and are uniform in terms of thickness and chemical composition. No major defects were visible at the interface; however, there is no diffusion at the interface, which indicates the adhesive type of bonding and results in relatively low adhesion. The coatings are characterized by a hardness of about 8-10 GPa and a Young modulus above 150 GPa. Both values are slightly higher for steel substrate. The coatings assure good corrosion resistance for steel substrate while underperforming those of Ti grade 2.
Wydawca

Rocznik
Strony
art. no. e140, 2023
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Ul. Wołoska 141, 02‑507 Warsaw, Poland, ewa.ura@pw.edu.pl
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Ul. Wołoska 141, 02‑507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Ul. Wołoska 141, 02‑507 Warsaw, Poland
  • Lukasiewicz Research Networks-Institute for Sustainable Technology, 6/10 Pułaskiego St., 26-600 Radom, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Ul. Wołoska 141, 02‑507 Warsaw, Poland
Bibliografia
  • 1. Zhou C, Cai F, Kong J, Gong S, Xu H. A study on the tribological properties of low-pressure plasma-sprayed Al-Cu-Fe-Cr quasicrystalline coating on titanium alloy. Surf Coat Technol. 2004;187:225-9.
  • 2. Fleury E, Kim Y-C, Kim J-S, Kim D-H, Kim WT, Ahn H-S, Lee S-M. Comparative study of the tribological behavior of thermal sprayed quasicrystalline coating layers. J Alloys Compd. 2002;342:321-5.
  • 3. Lee SM, Fleury E, Kim JS, Kim YC, Kim DH, Kim WT, Ahn HS. Potential industrial applications of Al-based quasicrystals plasma sprayed vs HVOF sprayed coatings. MRS Online Proc Libr. 2001;643:152. https://doi.org/10.1557/PROC-643-K15.2.
  • 4. Lu M, Chien CL. Al65Cu20Fe15 in amorphous, crystalline and quasicrystalline states. Hyperfine Interact. 1992;71:1525-9. https://doi.org/10.1007/BF02397371.
  • 5. Klein T, Symko OG. Formation of AlCuFe quasicrystalline thin films by solid state diffusion. Appl Phys Lett. 1994;64:431-3. https://doi.org/10.1063/1.111944.
  • 6. Yoshioka A, Edagawa K, Kimura K, Takeuchi S. Production of high-quality thin-film samples of Al-Cu-Fe icosahedral quasicrystal. Jpn J Appl Phys. 1995;34:1606-9. https://doi.org/10.1143/jjap.34.1606.
  • 7. Eisenhammer T, Trampert A. Formation of quasicrystalline alcufe by physical vapor deposition: phase selection via nanocluster nucleation. Phys Rev Lett. 1997;78:262-5. https://doi.org/10.1103/PhysRevLett.78.262.
  • 8. Eisenhammer T, Mahr A, Haugeneder A, Assmann W. Selective absorbers based on AlCuFe thin films. Sol Energy Mater Sol Cells. 1997;46:53-65.
  • 9. Widjaja EJ, Marks LD. In situ studies of magnetron sputtered Al-Cu-Fe-Cr quasicrystalline thin films. Thin Solid Films. 2002;420-421:295-9.
  • 10. Daniels MJ, King D, Fehrenbacher L, Zabinski JS, Bilello JC. Physical vapor deposition route for production of Al-Cu-Fe-Cr and Al-Cu-Fe quasicrystalline and approximant coatings. Surf Coatings Technol. 2005;191:96-101. https://doi.org/10.1016/j.surfcoat.2004.07.117.
  • 11. Panjan P, Čekada M, Dolinšek J, Vrtič B, Zalar A, Kek-Merl D. Diffusion processes during heat treatment of Al-Cr-Fe thin films. Vacuum. 2007;82:286-9.
  • 12. Ura-Binczyk E, Homazava N, Ulrich A, Hauert R, Lewandowska M, Kurzydlowski KJ, Schmutz P. Passivation of Al-Cr-Fe and Al-Cu-Fe-Cr complex metallic alloys in 1M H2SO4 and 1M NaOH solutions. Corros Sci. 2011;53:1825-37.
  • 13. He J, Liao X, Lan X, Qiu W, Yu H, Zhang J, Fan W, Zhong X, Liu Z. Annealed Al-Cr coating: A hard anti-corrosion coating with grain boundary modification effect for Nd-Fe-B magnets. J Alloys Compd. 2021;870:159229. https://doi.org/10.1016/j.jallcom.2021.159229.
  • 14. Kiz MM, Byakova AV, Sirko AI, Milman YV, Yakovleva MS. Cold spray coatings of Al-Fe-Cr alloy reinforced by nano-sized quasicrystalline particles. Ukr J Phys. 2009;54:594-9.
  • 15. Młynarek-Żak K, Pakieła W, Łukowiec D, Bajorek A, Gębara P, Szakal A, Dhiman I, Babilas R. Structure and selected properties of Al-Cr-Fe alloys with the presence of structurally complex alloy phases. Sci Rep. 2022;12:1-12. https://doi.org/10.1038/s41598-022-17870-0.
  • 16. Ustinov A, Polishchuk S, Scorodzievskii V, Telychko V. Structure and properties of quasicrystalline and approximant EBPVD coatings of Al-based systems. Zeitschrift Fur Krist - Cryst Mater. 2009;224:9-12. https://doi.org/10.1524/zkri.2009.1109.
  • 17. Beni A, Ott N, Ura-Bińczyk E, Rasinski M, Bauer B, Gille P, Ulrich A, Schmutz P. Passivation and localised corrosion susceptibility of new Al-Cr-Fe complex metallic alloys in acidic NaCl electrolytes. Electrochim Acta. 2011;56:10524-32.
  • 18. Balbyshev VN, Khramov AN, King DJ, Phillips BS, Kasten LS, Donley MS. Investigation of nanostructured Al-based quasicrystal thin films for corrosion protection. Prog Org Coatings. 2003;47:357-64.
  • 19. Balbyshev VN, King DJ, Khramov AN, Kasten LS, Donley MS. Investigation of quaternary Al-based quasicrystal thin films for corrosion protection. Thin Solid Films. 2004;447-448:558-63.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5926946-ea37-4ec7-9d8a-b495c5fa1661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.