Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 17, no. 4 | 738--749
Tytuł artykułu

Heuristics in optimal detailed design of precast road bridges

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the cost optimization of road bridges consisting of concrete slabs prepared in situ and two precast-prestressed U-shaped beams of self-compacting concrete. It shows the efficiency of four heuristic algorithms applied to a problem of 59 discrete variables. The four algorithms are the Descent Local Search (DLS), a threshold accepting algorithm with mutation operation (TAMO), the Genetic Algorithm (GA), and the Memetic Algorithm (MA). The heuristic optimization algorithms are applied to a bridge with a span length of 35 m and a width of 12 m. A performance analysis is run for the different heuristics, based on a study of Pareto optimal solutions between execution time and efficiency. The best results were obtained with TAMO for a minimum cost of 104 184€. Among the key findings of the study, the practical use of these heuristics in real cases stands out. Furthermore, the knowledge gained from the investigation of the algorithms allows a range of values for the design optimization of such structures and pre-dimensioning of the variables to be recommended.
Wydawca

Rocznik
Strony
738--749
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain, vyepesp@cst.upv.es
  • Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain, jvmartia@cst.upv.es
  • Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain, tagarse@cam.upv.es
  • Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain, fgonzale@cst.upv.es
Bibliografia
  • [1] A. Yee, Social and environmental benefits of precast concrete technology, PCI Journal 46 (3) (2001) 14–19.
  • [2] V.K. Koumousis, S.J. Arsenis, Genetic algorithms in optimal detailed design of reinforced concrete members, Computer- Aided Civil and Infrastructure Engineering 13 (1) (1998) 43–52.
  • [3] E.K. Zavadskas, T. Vilutiene, Z. Turskis, J. Saparauskas, Multi-criteria analysis of projects' performance in construction, Archives of Civil and Mechanical Engineering 14 (1) (2014) 114–121.
  • [4] M. Medineckiene, E.K. Zavadskas, F. Bjork, Z. Turskis, Multi-criteria decision-making system for sustainable building assessment/certification, Archives of Civil and Mechanical Engineering 15 (1) (2015) 11–18.
  • [5] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Computing Surveys 35 (3) (2003) 268–308.
  • [6] R.J. Balling, X. Yao, Optimization of reinforced concrete frames, Journal of Structural Engineering 123 (2) (1997) 193– 202.
  • [7] C.A. Coello, A.D. Christiansen, F. Santos, A simple genetic algorithm for the design of reinforced concrete beams, Engineering with Computers 13 (4) (1997) 185–196.
  • [8] M.Z. Cohn, A.S. Dinovitzer, Application of structural optimization, Journal of Structural Engineering 120 (2) (1994) 617–649.
  • [9] W. Hare, J. Nutini, S. Tesfamariam, A survey of non-gradient optimization methods in structural engineering, Advances in Engineering Software 59 (2013) 19–28.
  • [10] A. Carbonell, F. González-Vidosa, V. Yepes, Design of reinforced concrete road vaults by heuristic optimization, Advances in Engineering Software 42 (4) (2011) 151–159.
  • [11] A. Kesy, A. Kadziela, Construction optimization of hydrodynamic torque converter with application of genetic algorithm, Archives of Civil and Mechanical Engineering 11 (4) (2011) 905–920.
  • [12] H. Cai, A.J. Aref, A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges, Structural and Multidisciplinary Optimization 52 (3) (2015) 583–594.
  • [13] W. Beluch, T. Burczyński, Two-scale identification of composites' material constants by means of computational intelligence methods, Archives of Civil and Mechanical Engineering 14 (4) (2014) 636–646.
  • [14] P. Fedeliński, R. Górski, Optimal arrangement of reinforcement in composites, Archives of Civil and Mechanical Engineering 15 (2) (2015) 525–531.
  • [15] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering 15 (4) (2015) 1024–1036.
  • [16] M. Kripka, G.F. Medeiros, A.C.C. Lemonge, Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures, Engineering Structures 99 (2015) 311–318.
  • [17] C. Torres-Machí, V. Yepes, J. Alcalá, E. Pellicer, Optimization of high-performance concrete structures by variable neighborhood search, International Journal of Civil Engineering 11 (2) (2013) 90–99.
  • [18] S.M. Nigdeli, G. Bekdas, S. Kim, Z.W. Geem, A novel harmony search based optimization of reinforced concrete biaxially loaded columns, Structural Engineering and Mechanics 54 (6) (2015) 1097–1109.
  • [19] T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures 125 (2016) 325–336.
  • [20] F.J. Martínez-Martín, F. González-Vidosa, A. Hospitaler, V. Yepes, A parametric study of optimum tall piers for railway bridge viaducts, Structural Engineering and Mechanics 45 (6) (2013) 723–740.
  • [21] T. García-Segura, V. Yepes, J.V. Martí, J. Alcalá, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Latin American Journal of Solids and Structures 11 (7) (2014) 1190–1205.
  • [22] S. Talatahari, A.H. Gandomi, X.S. Yang, S. Deb, Optimum design of frame structures using the Eagle Strategy with Differential Evolution, Engineering Structures 91 (2013) 16–25.
  • [23] C.V. Camp, A. Akin, Design of retaining walls using big bang-big crunch optimization, Journal of Structural Engineering 138 (3) (2012) 438–448.
  • [24] M.A. Hassanain, R.E. Loov, Cost optimization of concrete bridge infrastructure, Canadian Journal of Civil Engineering 30 (5) (2003) 841–849.
  • [25] S. Hernández, A.N. Fontan, J. Díaz, D. Marcos, VTOP. An improved software for design optimization of prestressed concrete beams, Advances in Engineering Software 41 (3) (2010) 415–421.
  • [26] S. Ohkubo, P.B.R. Dissanayake, K. Taniwaki, An approach to multicriteria fuzzy optimization of a prestressed concrete bridge system considering cost and aesthetic feeling, Structural Optimization 15 (2) (1998) 132–140.
  • [27] G.F. Sirca, H. Adeli, Cost optimization of prestressed concrete bridges, Journal of Structural Engineering 131 (3) (2005) 380– 388.
  • [28] R. Ahsan, S. Rana, S. Nurul Ghani, Cost optimum design of posttensioned I-girder bridge using global optimization algorithm, Journal of Structural Engineering 138 (2) (2012) 273–284.
  • [29] T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Engineering Structures 92 (2015) 112–122.
  • [30] J.V. Martí, F. Gonzalez-Vidosa, V. Yepes, J. Alcalá, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Engineering Structures 48 (2013) 342–352.
  • [31] M. Fomento, Code on Structural Concrete EHE-08, Ministerio de Fomento, Madrid, Spain, 2008 (in Spanish).
  • [32] M. Fomento, IAP-98: Code on the Actions for the Design of Road Bridges, Madrid, Spain, 1998.
  • [33] I. Payá-Zaforteza, V. Yepes, F. González-Vidosa, A. Hospitaler, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica 45 (5) (2010) 693–704.
  • [34] G. Dueck, T. Scheuer, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing, Journal of Computational Physics 90 (1990) 161–175.
  • [35] J. Medina, Estimation of incident and reflected waves using simulated annealing, Journal of Waterway, Port, Coastal, and Ocean Engineering 127 (4) (2001) 213–221.
  • [36] A. Luz, V. Yepes, F. González-Vidosa, J.V. Martí, Design of open reinforced concrete abutments road bridges with hybrid stochastic hill climbing algorithms, Informes de la Construcción 67 (540) (2015) e114.
  • [37] J.H. Holland, Adaptation in Natural and Artificial Systems, 1975 https://mitpress.mit.edu/books/adaptation-natural-and- artificial-systems (accessed 10.11.16).
  • [38] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts – Towards Memetic Algorithms, Caltech Concurrent Computation Program (Report 826), 1989 http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.27.9474 (accessed 09.11.16).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d57a71c6-7c03-4cdf-b1aa-638d36aa5c08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.