Warianty tytułu
Języki publikacji
Abstrakty
The excitation amplitude imaging condition (EAIC) is a high-resolution, computationally efficient, and low-storage imaging condition in reverse time migration (RTM). However, when there are strong reflection interfaces in the velocity model, they will produce low-frequency artifacts, which seriously contaminate the RTM image. The artifacts can be removed by the wavefield decomposition algorithm, but this process always performed by analytic time wavefield extrapolation, which needs extra wavefield extrapolation. Furthermore, an extra source wavefield extrapolation is required to determine the excitation time before the migration. Thus, the additional wavefield extrapolations can seriously damage the computationally efficient advantage of the EAIC. By taking advantage of the directivity and low storage of excitation amplitude, we present a low-frequency artifact suppression method with no extra wavefield extrapolation. Poynting vector, reference traveltime and minimum amplitude threshold are combined to constraint the excitation amplitude updating process, and it makes the excitation amplitude more consistent with the definition of excitation criterion. We can directly obtain a noise-free excitation amplitude without the source wavefield decomposition. Instead of the analytic time wavefield extrapolation, the time-bin technique and the windowed Hilbert transform are combined to achieve the receiver wavefield decomposition only at the excitation time. The numerical results show that our method can effectively suppress the low-frequency artifacts in the image with no extra wavefield extrapolation.
Czasopismo
Rocznik
Tom
Strony
1225--1240
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China, wangdeli@jlu.edu.cn
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
autor
- Jilin High Grade Highway Engineering Co., Ltd, Changchun, China
autor
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
Bibliografia
- 1. Baysal E, Kosloff D, Sherwood J (1983) Reverse-time migration. Geophysics 48:1514–1524. https://doi.org/10.1190/1.1441434
- 2. Fei TW, Luo Y et al (2015) Removing false images in reverse time migration: the concept of de-primary. Geophysics 80(6):S237–S244. https://doi.org/10.1190/geo2015-0289.1
- 3. Fei TW, Luo Y, Schuster GT (2010) De-blending reverse-time migration. In: 80th Annual international meeting, SEG, expanded abstracts, p 3130-3134. https://doi.org/10.1190/1.3513496
- 4. Fei TW, Luo Y, Qin F (2014) An endemic problem in reverse-time migration. In: 84th Annual international meeting, SEG, expanded abstracts, p 3811-3815. https://doi.org/10.1190/segam2014-0209.1
- 5. Gu B, Liu YS et al (2015) A modified excitation amplitude imaging condition for prestack reverse time migration. Explor Geophys 46(4):359–370. https://doi.org/10.1071/EG14039
- 6. Guo X, Liu H et al (2018) Improving waveform inversion using modified interferometric imaging condition. Acta Geophys 66:71–80. https://doi.org/10.1007/s11600-017-0107-9
- 7. Hu L, McMechan GA (1987) Wave-field transformations of vertical seismic profiles. Geophysics 52(3):307–321. https://doi.org/10.1190/1.1442305
- 8. Hu JT, Wang HZ (2015) Reverse time migration using analytical time wavefield extrapolation and separation. Chin J Geophys (in Chinese) 58(8):2886–2895. https://doi.org/10.6038/cjg20150822
- 9. Kalita M, Alkhalifah T (2016) Common-image gathers using the excitation amplitude imaging condition. Geophysics 81(4):S261–S269. https://doi.org/10.1190/geo2015-0413.1
- 10. Kalita M, Alkhalifah T (2017) Efficient full waveform inversion using the excitation representation of the source wavefield. Geophys J Int 210(3):1581–1594. https://doi.org/10.1093/gji/ggx214
- 11. Li BW, Stovas A (2021) Decoupled approximation and separate extrapolation of P- and SV-waves in transversely isotropic media. Geophysics 86(4):C133–C142. https:// doi. org/ 10. 1190/ geo2020-0232.1
- 12. Li BW, Wang DL, Zhou JJ et al (2020) Efficient mixed-domain pure P-wave equations for 2D and 3D tilted transversely isotropic media. Acta Geophys 68:605–618. https://doi.org/10.1007/s11600-020-00438-9
- 13. Lian S, Yuan S, Wang G et al (2018) Enhancing low-wavenumber components of full-waveform inversion using an improved wavefield decomposition method in the time-space domain. J Appl Geophys 157:P10-22. https://doi.org/10.1016/j.jappgeo.2018.06.013
- 14. Liu F, Zhang GQ et al (2011) An effective imaging condition for reverse-time migration using wavefield decomposition. Geophysics 76(1):S29–S39. https://doi.org/10.1190/1.3533914
- 15. Loewenthal D, Mufti IR (1983) Reverse-time migration in spatial frequency domain. Geophysics 48:627–635. https://doi.org/10.1190/1.1441493
- 16. McMechan GA (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31:413–420. https://doi.org/10.1111/j.1365-2478.1983.tb01060.x
- 17. Moradpouri F (2021) A new approach in reverse time migration for properly imaging complex geological media. Acta Geophys 69:529–538. https://doi.org/10.1007/s11600-021-00565-x
- 18. Nguyen BD, McMechan GA (2013) Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics 78(1):S37–S46. https://doi.org/10.1190/geo2012-0079.1
- 19. Nguyen BD, McMechan GA (2015) Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 80(1):S1–S18. https://doi.org/10.1190/geo2014-0014.1
- 20. Revelo DE, Pestana RC (2019) Up/down acoustic wavefield decomposition using a single propagation and its application in reverse time migration. Geophysics 84(4):S341–S353. https://doi.org/10.1190/geo2018-0305.1
- 21. Wang WL, McMechan GA, Zhang QS (2015) Comparison of two algorithms for isotropic elastic P and S vector decomposition. Geophysics 80(4):T147–T160. https://doi.org/10.1190/geo2014-0563.1
- 22. Whitmore ND (1983) Iterative depth migration by backward time propagation. In: 53th Annual international meeting and exposition, SEG, expanded abstracts: S10.1. https://doi.org/10.1190/1.1893867
- 23. Yan H, Yang L, Liu H (2015) Acoustic reverse-time migration using optimal staggered-grid finite-difference operator based on least squares. Acta Geophys 63:715–734. https://doi.org/10.2478/s11600-014-0259-9
- 24. Yan H, Yang L et al (2016) Implementation of elastic prestack reverse-time migration using an efficient finite-difference scheme. Acta Geophys 64:1605–1625. https://doi.org/10.1515/acgeo-2016-0078
- 25. Yan Z, Yang Y, Liu S (2020) True amplitude angle gathers from reverse time migration by wavefield decomposition at excitation amplitude time. Energies 13(23):6204. https://doi.org/10.3390/en13236204
- 26. Zhang Q, Mao W, Chen Y (2018) Attenuating crosstalk noise of simultaneous-source least-squares reverse time migration with GPU-based excitation amplitude imaging condition. IEEE Trans Geosci Remote Sens 57(1):P587-597. https://doi.org/10.1109/TGRS.2018.2858850
- 27. Zhou JJ, Wang DL (2017) Vector-based excitation amplitude imaging condition for elastic RTM. J Appl Geophys 147:1–9. https://doi.org/10.1016/j.jappgeo.2017.10.003
- 28. Zhou JJ, Wang DL et al (2019) Prestack elastic RTM for VTI media using vector wavefield decomposition and vector imaging conditions. Explor Geophys 50(3):297–309. https://doi.org/10.1080/08123985.2019.1603790
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5389b59-f2d5-4a85-8f08-35ee76adb794