Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Nr 1 (274) | 19--28
Tytuł artykułu

Various blowing-suction schemes for manipulating turbulent boundary layers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The methodology of efficiency analysis of turbulent flow modification by making permeable sections in the streamlined wing surface with the aim to reduce aerodynamic drag is the principal subject of the presented research. The numerical analysis of the effect of laterally and longitudinally located permeable sections on boundary-layer properties showed the following flow features: (1) the most effective place for permeable surface is an upwind side of the wing; (2) multi-sectional blowing can simply be organised as non-uniform (especially in the case of laterally arranged permeable sections) that brings additional flexibility to change the blowing intensity depending on flight mode and, first of all, on angle of attack; and (3) arrays of longitudinal permeable sections allow to intensify turbulent vortical structures exchange in the lateral direction and improve flow stability to stall. Moreover, due to creating the regular anisotropy of the boundary layer in the lateral direction, this modified blowing technique can potentially have some synergistic properties, which can give the additional benefit. All these effects are too delicate and their experimental study cannot be performed with the use of directed measurements of aerodynamic forces. The comparison of the obtained flow properties with the corresponding experimental data demonstrates an appropriate level of agreement.
Wydawca

Rocznik
Strony
19--28
Opis fizyczny
Bibliogr. 10 poz., rys., wzory
Twórcy
  • Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321005, China
  • Institute of Hydromechanics of the National Academy of Sciences of Ukraine, Department of Hydrobionics and Flow Control, 8/4 Marii Kapnist Street, Kyiv, 03057, Ukraine
autor
  • Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321005, China
  • Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321005, China, akrizhanovsky@gmail.com
  • Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, Department of Dynamics and Strength of New Types of Transport, 5 Pisarzhevsky Street, Dnipro, 49005, Ukraine
Bibliografia
  • [1] Kornilov V. Current State and Prospects of Researches on the Control of Turbulent Boundary Layer by Air Blowing. Prog Aerosp Sci. 2015;76(2015):1-23.
  • [2] Orellano A., Sperling S. The Aerodynamics of Heavy Vehicles II Trucks, Buses and Trains. Lecture Notes in Applied and Computational Mechanics. In: Browand F., McCallen R., editors. Aerodynamic Improvements and Associated Energy Demand Reduction of Trains [Internet]. Berlin, Heidelberg: Springer; 2009. p. 219-31. Available from: https://doi.org/10.1007/978-3-540-85070-0_19
  • [3] Hwang D. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using A Micro-Blowing Technique. AIAA. 2000:No. 2000-0545.
  • [4] Kornilov V., Boiko A. Towards Improving the Efficiency of Blowing Through A Permeable Wall and Prospects of its Use for A Flow Control. Perm National Res Polytech Univ Aerosp Eng Bull [Internet]. 2016;2016(45). Available from: https://doi.org/10.15593/2224-9982/2016.45.03
  • [5] Kornilov V. Steady Blowing/Suction into Turbulent Boundary Layer of a Symmetrical Airfoil Section. Sib J Phys [Internet]. 2018;13(1):33-44. Available from: https://doi.org/10.25205/2541-9447-2018-13-1-33-44
  • [6] Kornilov V., Boiko A. Turbulent Flow Control by Microblowing Through Microhole Perforated Wall. Proc 10th Int Symp Exp Comput Aerothermodyn Intern Flows 4 7 July 2011 Bruss Belg. 2011:ISAIF10-046.
  • [7] Shkvar E., Jamea A., Shi-ju E., Cai J., Kryzhanovskyi S. Effectiveness of Blowing for Improving the High-Speed Trains Aerodynamics. Thermophys Aeromechanics [Internet]. 2018 Dec 26;25(2018):675-86. Available from: https://doi.org/10.1134/S0869864318050049
  • [8] Shkvar E., Shi-ju E., Kryzhanovskyi A. Mathematical Modeling of Turbulent Boundary Layers, Modified by Wall-Localized Drag Reduction Techniques. Aerosp Sci Technol. 2019;93(2019):53-9.
  • [9] Shkvar E., Zinchenko D., Trotsenko D., Jamea A. Airplane Friction Drag Reduction by Means of Microblowing through Permeable Wing Surface Sections. Mech Gyroscopic Syst NTUU KPI [Internet]. 2016;32(2016):108-19. Available from: https://doi.org/10.20535/0203-377132201695789
  • [10] Kornilov V., Shkvar E. Computational and Experimental Study of the Control Efficiency of the Flow Around an Airfoil by Means of Distributed Mass Transfer. Thermophys Aeromechanics [Internet]. 2021;28(2):187-206. Available from: https://doi.org/10.1134/S0869864321020025
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d5387b1d-3ec4-4cbe-9535-194a5501b669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.