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Secretary problem and two almost the same
consecutive applicants

Abstract The classical secretary problem involves sequentially interviewing a pool
of n applicants with the aim of hiring exactly the best one in the pool; nothing less
is good enough. The decision maker’s strategy should maximize the probability of
appropriate selection. The various modifications of the aim under the probability
maximization criterion do not contain the issue of selecting the pairs of secretaries
of very close absolute ranks. This paper is devoted to such a concern, which is for-
mulated in a rigorous way. The effectiveness of the threshold rules is analyzed. It
is shown that the asymptotic probability of success in this class of strategies may
achieve 0.5.
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1. Introduction. The classical secretary problem can be formulated as
follows:

• There is a set An of n rankable applicants.
• A company wants to hire the best applicant from the set An.
• The applicants come sequentially in a random order to be interviewed

by the company.
• After interviewing an applicant, the company has to immediately decide

if the applicant is selected or rejected.
• The rejected applicants cannot be recalled.
• The company knows only the number n and the relative ranks of the

applicants being interviewed so far.

The first articles presenting a solution to the secretary problem are [3], [4],
and [8]. An optimal stopping rule maximizes the probability of selecting
the best applicant. As n tends to infinity, the optimal stopping rule for the
classical secretary problem is as follows: Reject the first ne−1 applicants and
then select the first applicant, who is the best among all the applicants being
interviewed so far. The probability of selecting the best applicant with this
asymptotic optimal stopping rule is equal to e−1.
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Quite many generalizations of the secretary problem have been investi-
gated. To name just a few examples, in [17] an optimal stopping rule is
shown for selecting an applicant, who is “representative” for the given set of
applicants; a selection of the median object and a selection of any object from
a set of middle ranks are considered. The articles [2, 14, 16, 19, 21] research
an optimal stopping rule for selecting the best or the worst applicant and for
selecting the second best applicant (also known as postdoc problem).

In [13, 16, 22], the selection of more than one candidate is investigated.
In [6], a version of the secretary problem is investigated with the goal

to stop on the element closest to the center of the interval (0, 1), where the
observed elements are independent random variables from the uniform distri-
bution on the interval (0, 1).

For more variations of the secretary problem, we recommend the articles
[9], [10], [11], and [12].

Some recent surveys on generalizations of the secretary problem can be
found in [2], [5], and [20].

In the current article, we consider a variant of the secretary problem, that
consists in selecting two consecutive applicants whose absolute ranks differ
by one. Let An be a totally ordered set of n applicants. Given P ⊆ An and
x ∈ An, let RelRank(P, x) = |{z ∈ P | z ≤ x}| be the relative rank of x
with regard to P , and let RelRankn(x) = RelRank(An, x) be the absolute
rank of the candidate x. We formulate the variant as follows:

– A company wants to hire two applicants x, y ∈ An such that their
absolute ranks differ by one; formally RelRankn(x)−RelRankn(y) ∈
{−1, 1}.

– The applicants come sequentially in a random order to be interviewed
by the company. The manager of company observes ξ1, ξ2, . . . , ξn–the
sequences of candidates.

– After interviewing an applicant ξj , the company has to decide if the
previous applicant, i.e. ξj−1 is selected or rejected.

– After interviewing an applicant ξj , the company is allowed to immedi-
ately decide if the applicants ξj−1, ξj are selected or rejected.

– The rejected applicants cannot be recalled.
– The company knows only the number n and the relative ranks of the

applicants being interviewed so far.

From the formulation, it follows that the two selected applicants have to be
consecutive in the random sequence.

Let α be a real constant with 0 < α < 1 and let x1, x2, . . . , xn ∈
An be a random sequence of distinct applicants. Suppose the following
stopping rule τn(α): select the first pair of applicants xj−1, xj such that
RelRank(Pj , xj−1)− RelRank(Pj , xj) ∈ {−1, 1}, where

Pj = {xi | 1 ≤ i ≤ j} and j > ⌊αn⌋.
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In case that there is no such pair, the stopping rule τn(α) stops at the last
applicant.

Remark 1.1 Note that the stopping rule τn(α) rejects first ⌊αn⌋ − 1 appli-
cants.

Let Pn,τ (α) be the probability that τn(α) selects xj such that

RelRankn(xj−1)− RelRankn(xj) ∈ {−1, 1}.

The main result of the current article is the following theorem. The proof of
the theorem is presented at the end of the article.

Theorem 1.2 If α is a real constant and 0 < α < 1 then

lim
n→∞

Pn,τ (α) ≤
1

2
,

while the equality holds for α = 1
2 .

Less formally stated, with the given stopping rule τn(α), the optimal
strategy is to reject the first half of applicants, and then to select the first
consecutive pair of applicants, whose relative ranks differ by one between the
applicants being interviewed so far. The probability of success with this rule
tends to 2−1 as n tends to infinity.

Remark 1.3 The integer sequence A0024641 expresses “the number of per-
mutations of length n without rising or falling successions”. Let a(n) denote
this integer sequence A002464. It is known [1, 15], that limn→∞

a(n)
n! = e−2.

It follows that if x1, x2, . . . , xn ∈ An is a random sequence of n distinct
applicants, then with probability e−2 there is no j ∈ {2, . . . , n} such that
RelRankn(xj−1)− RelRankn(xj) ∈ {−1, 1} as n tends to infinity. It gives
the upper bound for the asymptotic probability of success of the optimal
algorithm equal to 1− e−2.

2. Probabilistic point of view Although our proofs are purely combi-
natorial, we explain in this section the probabilistic model that is commonly
used when dealing with the secretary problem and its variants; see, for in-
stance, [7] and [20].

Suppose a probability space (Ω,F ,P). Elementary events are permuta-
tions of all candidates and the probability measure P is evenly distributed
over Ω. Observations of relative ranks Rk define the sequence of σ-fields
Fk = σ(R1, R2, . . . , Rk), where k ∈ {1, 2, . . . , n}. The random variables

1v. [18], https://oeis.org/A002464

https://oeis.org/A002464
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Rk are independent and P{Rk = i} = 1
k , where k ∈ {1, 2, . . . , n} and

i ∈ {1, 2, . . . , k}. Let Mn denote the set of all Markov moments τ relative to
the sequence of σ-fields {Fk}nk=1.

The classical secretary problem can be stated as follows: We are looking
for τ∗ ∈ Mn such that

P{Zτ∗ = 1} = sup
τ∈Mn

P{Zτ = 1},

where {Zk}nk=1 are the absolute ranks of the observations. In the observation
process they are hidden and they are recovered at the very end of the selection
procedure.

The problem considered in this article can be formulated as follows: Find
τ∗ ∈ Mn such that

P{(Zτ∗ − Zτ∗−1) ∈ {−1, 1}} = sup
τ∈Mn

P{(Zτ − Zτ−1) ∈ {−1, 1}}.

In addition we present an open question: Is it a problem to solve the
double stopping problem; it means to find τ, ν ∈ Mn such that

P{(Zτ∗ − Zν∗) ∈ {−1, 1}} = sup
τ,ν∈Mn

P{(Zτ − Zν) ∈ {−1, 1}}?

3. Preliminaries For the whole article, suppose that n > 3, where
n = |An|.

Let R+ denote the set of all positive real numbers, let Z denote the set of
all integers, and let N+ denote the set of all positive integers.

Given P ⊆ An with P ̸= ∅, let min{P} ∈ P and max{P} ∈ P be the
applicants such that min{P} ≤ x and max{P} ≥ x for all x ∈ P . Thus
min{P} and max{P} are the applicants from P with the minimal and the
maximal rank, respectively.

Given j ∈ N+, let Aj
n = {(x1, . . . , xj) | xi ∈ An for all i ∈ {1, 2, . . . , j}}

and let A+
n =

⋃
j∈N+ Aj

n. The elements of A+
n are called sequences of appli-

cants or just sequences.
Suppose x⃗, y⃗ ∈ A+

n , where x⃗ = (x1, x2, . . . , xi) and y⃗ = (y1, y2, . . . , yj).
Let x⃗ ◦ y⃗ ∈ Ai+j

n denote the concatenation of x⃗ and y⃗; formally

x⃗ ◦ y⃗ = (x1, x2, . . . , xi, y1, y2 . . . , yj) ∈ Ai+j
n .

Remark 3.1 We consider that An = A1
n; it means that if x ∈ An then

x = (x) is a sequence of length 1.

Given x⃗ = (x1, x2, . . . , xk) ∈ A+
n , let |x⃗| = k denote the length of x⃗, let

x⃗[i] = xi ∈ An, and let

x⃗[i, j] = (xi, xi+1, . . . , xj) ∈ Aj−i+1
n ,
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where i, j ∈ {1, 2, . . . , k} and i ≤ j.
Given x⃗ ∈ A+

n , let toSet(x⃗) = {x⃗[i] | 1 ≤ i ≤ |x⃗|} be the set of applicants
of the sequence x⃗.

Given k ∈ N+, k ≤ n, let

Γn(k) = {x⃗ ∈ Ak
n | x⃗[i] = x⃗[j] implies i = j for all i, j ∈ {1, 2, . . . , k}}.

Let Γn = Γn(n). Obviously |Γn(k)| = n!
(n−k)! and in particular |Γn| = n!.

Remark 3.2 The set Γn(k) contains sequences of k distinct applicants. The
sequences of Γn represent the sequences of applicants that the company is
interviewing when selecting the applicants.

Given k ∈ N+, let ∆(k) = {−1, 1, k − 1, 1− k} ⊆ Z. Given P ⊆ An, let

Adj(P ) = {{x, y} | x, y ∈ P and
RelRank(P, x)− RelRank(P, y) ∈ ∆(|P |)}.

If {x, y} ∈ Adj(P ) then we say that the applicants x, y are adjacent with
regard to P .

Remark 3.3 The set Adj(P ) contains all sets {x, y} such that the difference
of relative ranks of x, y with regard to P is from the set ∆(|P |).

The set ∆(k) contains the differences in relative ranks, that “the company
is looking for”; it means {−1, 1} ⊆ ∆(k). In addition the set ∆(k) contains
values 1 − k, k − 1. In consequence the applicants max{P} and min{P} are
adjacent with regard to P .

4. Consecutive applicants We present a technical lemma that we use
in the proof of Proposition 4.4.

Lemma 4.1 If P ⊆ An, |P | ≥ 3, x ∈ P , and

υn(P, x) = |{y ∈ P | y ̸= x and {x, y} ∈ Adj(P )}|,

then υn(P, x) = 2.

Proof Clearly, we have that

• If x ∈ P \ {max{P}} then there is exactly one applicant y ∈ P such
that RelRank(P, x)− RelRank(P, y) = −1.

• If x ∈ P \ {min{P}} then there is exactly one applicant y ∈ P such
that RelRank(P, x)− RelRank(P, y) = 1.

• If x = max{P} then there is exactly one applicant y ∈ P such that
RelRank(P, x)− RelRank(P, y) = |P | − 1.
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• If x = min{P} then there is exactly one applicant y ∈ P such that
RelRank(P, x)− RelRank(P, y) = 1− |P |.

Note that x satisfies exactly two of the four mentioned conditions. Each
condition produces exactly one y corresponding to x. The lemma follows. ■

Remark 4.2 Lemma 4.1 is the reason that we have defined that max{P}
and min{P} are adjacent with regard to P . Otherwise the number of y’s
used in the definition of υn(P, x) would depend on x ∈ P . As a result the
proof of the next proposition will be more simple.

Given r, k ∈ {3, 4, . . . , n} with r < k, let

Λn(r, k) = {x⃗ ∈ Γn | RelRankn(x⃗[k − 1])− RelRankn(x⃗[k]) ∈ {−1, 1}
and {x⃗[i− 1], x⃗[i]} ̸∈ Adj(toSet(x⃗[1, i]))

for all i ∈ {r + 1, r + 2, . . . , k − 1}}.

Let Λn(r) =
⋃n

k=r+1 Λn(r, k). Obviously Λn(r, k) ∩ Λn(r, k) = ∅ if k ̸= k.

Remark 4.3 We have that if x⃗ ∈ Λn(r) then there is exactly one k such that
r < k ≤ n and x⃗ ∈ Λn(r, k).

Given r, k ∈ {3, 4, . . . , n} with r < k, and z, z ∈ An, let

Λn(r, k, z, z) = {x⃗ ∈ Λn(r, k) | x⃗[k − 1] = z and x⃗[k] = z}.

The sets Λn(r, k, z, z) form a partition of the set Λn(r, k). We derive a
formula for the size of the sets Λn(r, k, z, z).

Proposition 4.4 If z, z ∈ An, RelRankn(z) − RelRankn(z) ∈ {−1, 1},
r, k ∈ {3, 4, . . . , n}, and r < k then

|Λn(r, k, z, z)| = (n− 2)!
(r − 1)(r − 2)

(k − 2)(k − 3)
.

Proof Given y⃗ ∈ A+
n , let

ω(y⃗) = An \ ({z, z} ∪ toSet(y⃗)) .

Given j ∈ N+ and D ⊆ A+
n , let

Suffixn(D, j) = {y⃗ ∈ Aj
n | there is x⃗ ∈ A+

n such that x⃗ ◦ y⃗ ∈ D}.

Let k, z, z be given. For j ∈ {1, 2, . . . , n}, we define the sets H(j) ⊆
Suffixn(Γn, n− j + 1) as follows. Let

H(n) =

{
{z} if k = n

{x | x ∈ An \ {z, z}} otherwise.
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Given j ∈ {k + 1, k + 2, . . . , n− 1}, let

H(j) = {(x) ◦ y⃗ | y⃗ ∈ H(j + 1) and x ∈ ω(y⃗)}.

Let

H(k) =

{
H(n) = {z} if k = n

{(z) ◦ y⃗ | y⃗ ∈ H(k + 1)} otherwise.

Let H(k − 1) = {(z) ◦ y⃗ | y⃗ ∈ H(k)}. Given j ∈ {r, r + 1, . . . , k − 2}, let

H(j) =
{
(x) ◦ y⃗ | y⃗ ∈ H(j + 1) and
x ∈ ω(y⃗) and {x, y⃗[1]

}
̸∈ Adj(ω(y⃗) ∪ {y⃗[1]})}.

Given j ∈ {1, 2, . . . , r − 1}, let

H(j) = {(x) ◦ y⃗ | y⃗ ∈ H(j + 1) and x ∈ ω(y⃗)}.

We have defined sets H(j) for j ∈ {1, 2, . . . , n}. It is straightforward to
verify that Λ(r, k, z, z) = H(1). We derive the formulas for the size of H(j).
Note that if y⃗ ∈ H(j + 1) ⊆ Suffixn(Γn, n − j), then |y⃗| = n − j. From the
definition of H(j) it follows that

•

|H(n)| =

{
1 if k = n

n− 2 otherwise.

• If j ∈ {k + 1, k + 2, . . . , n− 1} then |H(j)| = (j − 2)|H(j + 1)|.
Realize that if y⃗ ∈ H(j+1) then |y⃗| = n− j, toSet(y⃗)∩{z, z} = ∅, and
|{z, z}| = 2. It follows that |ω(y⃗)| = (n− (n− j)− 2) = j − 2.

•

|H(k)| =

{
|{z}| = 1 if k = n

|H(k + 1)| otherwise.

• |H(k − 1)| = |H(k)|.
• If j ∈ {r, r + 1, . . . , k − 2} then |H(j)| = (j − 2)|H(j + 1)|.

Realize that if y⃗ ∈ H(j + 1) then |y⃗| = n− j and {z, z} ⊆ toSet(y⃗). It
follows that |ω(y⃗)| = (n−(n−j)) = j. Moreover, since |ω(y⃗)∪{y⃗[1]}| ≥
3, Lemma 4.1 implies that there are exactly two distinct applicants
x, x ∈ ω(y⃗) such that

{x, y⃗[1]}, {x, y⃗[1]} ∈ Adj(ω(y⃗) ∪ {y⃗[1]}).

• If j ∈ {1, 2, . . . , r−1} then |H(j)| = (n−(n−j))|H(j+1)| = j|H(j+1)|.
Realize that if y⃗ ∈ H(j + 1) then |y⃗| = n− j and {z, z} ⊆ toSet(y⃗). It
follows that |ω(y⃗)| = (n− (n− j)) = j.
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j n n-1 . . . k+1 k k-1 k-2 . . . r+1 r r-1 . . .
g(j) n-2 n-3 . . . k-1 1 1 k-4 . . . r-1 r-2 r-1 . . .

Table 1: The values of g(j).

Let g(j) = |H(j)|
|H(j+1)| for j ∈ {1, 2, . . . , n − 1} and let g(n) = n − 2. The

value of g(n) represents the size of H(n), when k ̸= n. Table 1 shows the
values of g(j); the case with k = n is represented by the table shrunk to the
columns from j = k to j = 1. From the table we can derive that

|H(1)| = (n− 2)!
(r − 1)(r − 2)

(k − 2)(k − 3)
.

Since Λ(r, k, z, z) = H(1) this completes the proof. ■

Using Proposition 4.4, we can present a formula for the size of Λn(r, k).

Lemma 4.5 If r, k ∈ {3, 4, . . . , n} and r < k then

|Λn(r, k)| = 2(n− 1)!
(r − 1)(r − 2)

(k − 2)(k − 3)
.

Proof It is clear that

Λn(r, k) =
⋃

(z,z)∈A2
n

Λn(r, k, z, z).

If z1, z2, z3, z4 ∈ An and (z1, z2) ̸= (z3, z4) then

Λn(r, k, z1, z2) ∩ Λn(r, k, z3, z4) = ∅.

If z, z ∈ An and RelRankn(z) − RelRankn(z) ̸∈ {−1, 1} then from the
definition of Λn(r, k) and Λn(r, k, z, z) we have that

Λn(r, k, z, z) = ∅.

Let T = {(z, z) ∈ A2
n | RelRankn(z)− RelRankn(z) ∈ {−1, 1}}. It follows

then that

|Λn(r, k)| =
∑

(z,z)∈T

|Λn(r, k, z, z)|. (1)

Obviously we have that
|T | = 2(n− 1). (2)

The lemma follows from (1), (2), and Proposition 4.4. This completes the
proof. ■
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Given a sequence x⃗ ∈ Γn and r ∈ {3, 4, . . . , n−1}, the next theorem shows
the probability that x⃗ ∈ Λn(r).

Theorem 4.6 If r ∈ {3, 4, . . . , n− 1} then

|Λn(r)|
|Γn|

= 2
r − 1

n
− 2

(r − 1)(r − 2)

n(n− 2)
.

Proof Since Λn(r) =
⋃n

k=r+1 Λn(r, k) and Λn(r, k) ∩ Λn(r, k) = ∅ if k ̸= k,
we have that

|Λn(r)| =
n∑

k=r+1

|Λn(r, k)|. (3)

Recall that |Γn| = n! and note that 1
(k−2)(k−3) = 1

k−3 − 1
k−2 . Then from

Lemma 4.5 and (3) it follows that

|Λn(r)|
|Γn|

=
n∑

k=r+1

|Λn(r, k)|
n!

=
n∑

k=r+1

2
(n− 1)!

n!

(r − 1)(r − 2)

(k − 2)(k − 3)
=

2
(r − 1)(r − 2)

n

n∑
k=r+1

1

(k − 2)(k − 3)
= 2

(r − 1)(r − 2)

n

(
1

r − 2
− 1

n− 2

)
=

2
r − 1

n
− 2

(r − 1)(r − 2)

n(n− 2)
.

This completes the proof. ■

Given a sequence x⃗ ∈ Γn, α ∈ R+, and α < 1, the next lemma shows the
probability that x⃗ ∈ Λn(⌊αn⌋) as n tends to infinity.

Lemma 4.7 If α ∈ R+, α < 1 then

lim
n→∞

|Λn(⌊αn⌋)|
|Γn|

= 2α− 2α2 ≤ 1

2
,

while the equality holds for α = 1
2 .

Proof From Theorem 4.6 we get that

lim
n→∞

|Λn(⌊αn⌋)|
|Γn|

= lim
n→∞

(
2
⌊αn⌋ − 1

n
− 2

(⌊αn⌋ − 1)(⌊αn⌋ − 2)

n(n− 2)

)
= lim

n→∞

(
2
αn− 1

n
− 2

(αn− 1)(αn− 2)

n(n− 2)

)
= 2α− 2α2.

It is easy to verify that the function f(α) = 2α− 2α2 has a maximum for
α = 2−1 and that f(2−1) = 2−1. This ends the proof. ■
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5. Bijections on sequences of applicants Let ρ : An → An be a
function defined as follows. Given x ∈ An, let

ρ(x) =


y ∈ An such that

RelRankn(y)− RelRankn(x) = 1 if x ̸= max{An}
min{An} if x = max{An}.

Given x ∈ An, we define that ρ1(x) = ρ(x) and ρi+1(x) = ρ(ρi(x)), where
i ∈ {1, 2, . . . , n− 1}. We define a function ρ : Γn → Γn as follows:

ρ(x⃗) = (ρ(x⃗[1]), ρ(x⃗[2]), . . . , ρ(x⃗[n])) ∈ Γn, where x⃗ ∈ Γn.

Given x⃗ ∈ Γn, let ρ1(x⃗) = ρ(x⃗) and ρi+1(x⃗) = ρ(ρi(x⃗)), where i ∈
{1, 2, . . . , n − 1}. Let Rn(x⃗) = {ρi(x⃗) | i ∈ {1, 2, . . . , n}}. It is clear that
ρ(x), ρ(x⃗) are bijections, ρn(x) = x, ρn(x⃗) = x⃗, and

|Rn(x⃗)| = n. (4)

Example 5.1 Let An = {1, 2, . . . , 9} and let x⃗ = (3, 5, 4, 6, 2, 7, 8, 9, 1) ∈ Γn.
Then we have that:
ρ1(x⃗) = (4, 6, 5, 7, 3, 8, 9, 1, 2),
ρ2(x⃗) = (5, 7, 6, 8, 4, 9, 1, 2, 3),
ρ3(x⃗) = (6, 8, 7, 9, 5, 1, 2, 3, 4).

We present a simple lemma that we will need. We omit the proof. The
lemma shows that the adjacent applicants on positions i− 1, i in a sequence
x⃗ ∈ Γn remain adjacent in the sequence ρ(x⃗).

Lemma 5.2 If x⃗ ∈ Γn, i ∈ {2, 3, . . . , n}, {x⃗[i− 1], x⃗[i]} ∈ Adj(toSet(x⃗[1, i])),
and y⃗ ∈ Rn(x⃗) then {y⃗[i− 1], y⃗[i]} ∈ Adj(toSet(y⃗[1, i])).

Given j, d ∈ N+ with j > 3 and x⃗ ∈ Γn, let

Rn(x⃗, j, d) = {y⃗ ∈ Rn(x⃗) |
RelRank(Pj , y⃗[j − 1])− RelRank(Pj , y⃗[j]) ∈ {−d, d},

where Pj = toSet(y⃗[1, j])}.

Recall that if applicants x⃗[j − 1], x⃗[j] are adjacent with regard to a set Pj =
toSet(x⃗[1, j]), then RelRank(Pj , x⃗[j − 1]) − RelRank(Pj , x⃗[j]) ∈ {−d, d},
where d is either 1 or j − 1. The next lemma offers an insight on how many
sequences from Rn(x⃗) have the values 1 and j − 1, respectively.

Lemma 5.3 If x⃗ ∈ Γn, j ∈ {3, 4, . . . , n}, Pj = toSet(x⃗[1, j]),

RelRank(Pj , x⃗[j − 1])−RelRank(Pj , x⃗[j]) ∈ {1− j, j − 1},

and h = RelRankn(max{Pj})−RelRankn(min{Pj}) then
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• |Rn(x⃗, j, 1)| = h, and
• |Rn(x⃗, j, j − 1)| = n− h.

Proof Note that {x⃗[j−1], x⃗[j]} ∈ Adj(Pj). Hence Lemma 5.2 and (4) imply
that

|Rn(x⃗, j, 1) ∪Rn(x⃗, j, j − 1)| = n. (5)

The condition RelRank(Pj , x⃗[j − 1]) − RelRank(Pj , x⃗[j]) ∈ {1 − j, j − 1}
implies that

{x⃗[j − 1], x⃗[j]} = {min{Pj},max{Pj}}. (6)

Let i ∈ {j − 1, j} be such that x⃗[i] = min{Pj} and let

Y = {y⃗ ∈ Rn(x⃗) | RelRankn(y⃗[i]) ≤ n− h}.

From (6) it is easy to see that y⃗ ∈ Y if and only if RelRank(Pj , y⃗[j − 1])−
RelRank(Pj , y⃗[j]) ∈ {1− j, j − 1}. Since obviously |Y | = n− h, the lemma
follows then from (5). This completes the proof. ■

Given x⃗ ∈ Γn, let

Υα(x⃗) = {j ∈ {⌊αn⌋+ 1, ⌊αn⌋+ 2, . . . , n} | {x⃗[j − 1], x⃗[j]} ∈ Adj(Pj),
where Pj = toSet(x⃗[1, j])}.

Given r, k ∈ {3, 4, . . . , n} with r < k, let

Φn(r, k) = {x⃗ ∈ Γn | RelRankn(x⃗[k − 1])− RelRankn(x⃗[k]) ∈ {−1, 1}
and RelRank(Pj , x⃗[j − 1])− RelRank(Pj , x⃗[j]) ̸∈ {−1, 1}, where

Pj = toSet(x⃗[1, j]) and j ∈ {r + 1, r + 2, . . . , k − 1}}

and let Φn(r) =
⋃n

k=r+1Φn(r, k). It is easy to see that Φn(⌊αn⌋) is the set of
sequences of Γn on which the stopping rule τn(α) “wins”. It follows that

Pn,τ (α) =
|Φn(⌊αn⌋)|

|Γn|
. (7)

Example 5.4 The following example illuminates the difference between the
sets Λn(r, k) and Φn(r, k).

Let x⃗ = (3, 5, 4, 6, 2, 7, 8, 9, 1) ∈ Γn with r = 3. The stopping rule τn(α)
selects a pair (7, 8) with k = 7. However note that x⃗ ̸∈ Λn(3, 7) because
{6, 2} ∈ Adj(toSet(x⃗[1, 5])). On the other hand, we have that x⃗ ∈ Φ9(3, 7).

Consider a sequence x⃗ ∈ Γn such that the stopping rule τn(α) wins on x⃗ but
x⃗ ̸∈ Λn(r). We show some properties of sequences from Rn(x⃗) that we will
apply in the proof of Theorem 6.1.
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Proposition 5.5 If x⃗ ∈ Φn(⌊αn⌋), x⃗ ̸∈ Λn(⌊αn⌋), j = minΥα(x⃗), P =
toSet(x⃗[1, j]), ⌊αn⌋ ≥ 3, and h = RelRankn(max{P})−RelRankn(min{P})
then

• If h = n− 1 then |Rn(x⃗) ∩ Λn(⌊αn⌋)| = n− 1.

• If h < n− 1 then |Rn(x⃗) ∩ (Γn \ Φn(⌊αn⌋))| ≥ h.

Proof Note that x⃗ ∈ Φn(⌊αn⌋) and x⃗ ̸∈ Λn(⌊αn⌋) assert that Υα(x⃗) ̸= ∅.
Thus j is well defined.

Since j is defined as the minimal element from the set Υα, we have that:

There is no ⌊αn⌋ < i < j such that {x⃗[i−1], x⃗[i]} ∈ Adj(toSet(x⃗[1, i])). (8)

Lemma 5.3 implies that

|Rn(x⃗, j, 1)| = h. (9)

We distinguish two cases.

• If h = n−1 then for every y⃗ ∈ Rn(x⃗, j, 1) we have that RelRankn(y⃗[j−
1])− RelRankn(y⃗[j]) ∈ {−1, 1}. Thus from (8) it follows that

Rn(x⃗, j, 1) ⊆ Λn(⌊αn⌋, j) ⊆ Λn(⌊αn⌋).

In consequence (9) implies that |Rn(x⃗) ∩ Λn(⌊αn⌋))| = h = n− 1.
• If h < n−1 then for every y⃗ ∈ Rn(x⃗, j, 1) we have that RelRankn(y⃗[j−
1])− RelRankn(y⃗[j]) ̸∈ {−1, 1}. Thus from (8) it follows that

Rn(x⃗, j, 1) ∩ Φn(⌊αn⌋) = ∅.

In consequence (9) implies that |Rn(x⃗) ∩ (Γn \ Φn(⌊αn⌋))| ≥ h.

This completes the proof. ■

6. Probability that the stopping rule τn(α) wins Given a real
positive constant β < 1, let

Kn(α, β) = {x⃗ ∈ Γn | RelRankn(max{P})− RelRankn(min{P}) ≤ βn,
where P = toSet(x⃗[1, ⌊αn⌋])}}.

It is straightforward to show that

lim
n→∞

|Kn(α, β)|
|Γn|

= 0. (10)

We show that the sizes of sets Φn(⌊αn⌋) and Λn(⌊αn⌋) are “equal” as n
tends to infinity.
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Theorem 6.1 We have that

lim
n→∞

|Φn(⌊αn⌋)|
|Λn(⌊αn⌋)|

= 1.

Proof From the definitions of Φn(⌊αn⌋) and Λn(⌊αn⌋) we have that

Λn(⌊αn⌋) ⊆ Φn(⌊αn⌋). (11)

Let β < 1 be a real positive constant. We define a partition of the set
Φn(⌊αn⌋) \ Λn(⌊αn⌋) into sets M1,M2,M3 as follows. If x⃗ ∈ Φn(⌊αn⌋) \
Λn(⌊αn⌋), j = min{Υα(x⃗)}, Pj = toSet(x⃗[1, j]), and

h = RelRankn(max{Pj})− RelRankn(min{Pj})

then

• If x⃗ ∈ Kn(α, β) then x⃗ ∈ M1.
• If x⃗ ̸∈ Kn(α, β) and h = n− 1 then x⃗ ∈ M2.
• If x⃗ ̸∈ Kn(α, β) and h < n− 1 then x⃗ ∈ M3.

It is clear that M1 ∪M2 ∪M3 = Φn(⌊αn⌋) \Λn(⌊αn⌋) and that M1, M2, and
M3 are pairwise disjoint. Then we have that

lim
n→∞

|Φn(⌊αn⌋) \ Λn(⌊αn⌋)|
|Λn(⌊αn⌋)|

=

lim
n→∞

(
|M1|

|Λn(⌊αn⌋)|
+

|M2|
|Λn(⌊αn⌋)|

+
|M3|

|Λn(⌊αn⌋)|

)
.

(12)

Note that 2α− 2α2 > 0. Then from Lemma 4.7 and (10) we have that

lim
n→∞

|M1|
|Λn(⌊αn⌋)|

= 0. (13)

If x⃗ ∈ M2 then Proposition 5.5 implies that |Rn(x⃗) ∩ Λn(⌊αn⌋)| = n− 1.
It follows that

lim
n→∞

|M2|
|Λn(⌊αn⌋)|

≤ lim
n→∞

1

n− 1
= 0. (14)

If x⃗ ∈ M3 then Proposition 5.5 implies that

|Rn(x⃗) ∩ (Γn \ Φn(⌊αn⌋))| ≥ h. (15)

Suppose that

lim
n→∞

|M3|
|Φn(⌊αn⌋)|

= δ > 0. (16)

From (4) and (15) it follows that if x⃗ ∈ M3 then

lim
n→∞

|Rn(x⃗) ∩M3|
|Rn(x⃗) ∩ (Γn \ Φn(⌊αn⌋))|

≤ n− h

h
. (17)
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Realize that if x⃗, y⃗ ∈ M3 then either Rn(x⃗) ∩ Rn(y⃗) = ∅ or Rn(x⃗) = Rn(y⃗).
Then (17) implies that

lim
n→∞

|M3|
|Γn \ Φn(⌊αn⌋)|

≤ n− h

h
. (18)

From (11), (16), and (18) it follows that

lim
n→∞

|Γn \ Φn(⌊αn⌋)|
|Λn(⌊αn⌋)|

≥ lim
n→∞

|Γn \ Φn(⌊αn⌋)|
|Φn(⌊αn⌋)|

≥ δ
h

n− h
.

Let γ = 2α− 2α2. Note that γ > 0. Then Lemma 4.7 implies that

lim
n→∞

|Γn \ Φn(⌊αn⌋)|
|Λn(⌊αn⌋)|

≤ 1

γ
. (19)

Realize that if x⃗ ̸∈ Kn(α, β) then h ≥ βn. Obviously there is β0 < 1 such
that for every β > β0 we have that δ h

n−h > 1
γ ; this would be a contradiction

to (19). Since β can be chosen arbitrarily we conclude that δ = 0. Hence
from (16) we have that

lim
n→∞

|M3|
|Φn(⌊αn⌋)|

= 0. (20)

Lemma 4.7, (11), and 2α− 2α2 > 0 imply that limn→∞
|Φn(⌊αn⌋)|
|Λn(⌊αn⌋)| < µ, where

µ is some positive real constant. Thus from (20) it follows that

lim
n→∞

|M3|
|Λn(⌊αn⌋)|

= 0. (21)

Then from (12), (13), (14), and (21) we have that

lim
n→∞

|Φn(⌊αn⌋) \ Λn(⌊αn⌋)|
|Λn(⌊αn⌋)|

= 0. (22)

The theorem follows from (11) and (22). This completes the proof. ■

We express the probability Pn,τ (α) by means of sizes of the sets Λn(r).

Lemma 6.2 We have that

lim
n→∞

Pn,τ (α) = lim
n→∞

|Λn(⌊αn⌋)|
|Γn|

.

Proof The lemma follows from (7) and Theorem 6.1. This completes the
proof. ■

Proof (Proof of Theorem 1.2) Theorem 1.2 follows immediately from
Lemma 6.2 and Lemma 4.7. ■
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Problem sekretarki z wyborem dwóch kandydatek o bliskich
absolutnych rangach.

Josef Rukavicka

Streszczenie Klasyczny problem sekretarki to sekwencyjny problem decyzyjny, w
którym celem jest wybór najlepszej kandydatki w postępowaniu rekrutacyjnym, gdy
w chwili decyzji statystyk ma niepełne dane o rzeczywistej wartości akceptowanej
kandydatki. Wybór kończy się niepowodzeniem, gdy wyselekcjonowana kandydatka
nie jest najlepszą wśród wszystkich n, które zgłosiły się na konkurs lub żadna nie
zostanie wybrana. Rekruter posługuje się strategią maksymalizującą szanse powo-
dzenia. Zadanie rozpatrzone w tej pracy jest modyfikacją, w której celem rekrutera
jest wybór dwóch bliskich co do globalnej rangi kandydatów zatrzymując się na
kandydacie, którego poprzednik jest potencjalnie bliski w przyjętym sensie. Autor
wyznacza strategię, która maksymalizuje prawdopodobieństwo sukcesu w tym zada-
niu. Pokazano, że asymptotyczne prawdopodobieństwo sukcesu w tej klasie strategii
może osiągnąć 0.5.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Słowa kluczowe: Gry stochastyczne, problem sekretarki, reguły zatrzymania, stra-
tegie progowe.
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