Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 140--150
Tytuł artykułu

Surface Modification of the Ti-35Nb-7Zr-5Ta Bio Alloy by the PM-EDM Route

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most attractive β-Ti alloys is Ti–35Nb–7Zr–5Ta wt% (TNZT) alloy, which has one of the minimal Young’s moduli among the β-Ti family (about 55 GPa) and contains no cytotoxic elements. On the other hand, β-type Ti alloys are susceptible to bacterial infection because they lack an antibacterial function and can get contaminated quickly after implantation, making surface modification a keyway to improve these alloys' antibacterial properties. A recently created technique called powder mixed-EDM can improve machining, mechanical, and biological properties at the same time. In this research, silver was added to the dielectric fluid during PM-EDM of Ti-35Nb-7Zr-5Ta wt% alloy prepared by powder metallurgy route. The surface composition, Brinell hardness, corrosion resistance, ion release, and antibacterial properties were evaluated for TNZT alloy before and after surface modification. The results show better hardness and corrosion resistance as well as lower ion release for the PM-EDMed specimen due to the presence of Ag, oxides, and carbides such as NbC, TiC, TiO2, ZrO2, and Nb2O5 that’s deposited and embedded as a hard phase in the recast layer of the machined surface. Also, the antibacterial property of the PM-EDMed specimen is effectively improved as silver is an antibiotic with a wide range, so it has favorable antibacterial properties for Gram-negative and Gram-positive bacteria.
Wydawca

Rocznik
Strony
140--150
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
Bibliografia
  • 1. Yadav P. and Saxena, K.K. Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview, in: Materials Today: Proceedings, 2019. doi: 10.1016/j.matpr.2020.02.541.
  • 2. Niinomi M., Narushima T., and Nakai M., Advan- tages in metallic biomaterials, processing and applications. 2015.
  • 3. Sowa M. et al., DC plasma electrolytic oxidation treatment of gum metal for dental implants, Electrochim Acta, 302, 2019, doi: 10.1016/j.electacta.2019.02.024.
  • 4. Lee Y.S., M. Niinomi, M. Nakai, K. Narita, and K. Cho, Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications, J Mech Behav Biomed Mater, 41, 2015, doi: 10.1016/j.jmbbm.2014.10.005.
  • 5. Yuan Z., He Y., Lin C., Liu P., and Cai K., Antibacterial surface design of biomedical titanium materials for orthopedic applications, Journal of Materials Science and Technology, 78, 2021. doi: 10.1016/j. jmst.2020.10.066.
  • 6. Zhang Y., Chu K., He S., Wang B., Zhu W., and Ren F., Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications, Materials Science and Engineering C, 106, 2020, doi: 10.1016/j. msec.2019.110165.
  • 7. Vinodhini S.P. and Sridhar T.M., TiO2 rutile phase formed interlayers by sintering monophasic bioceramics for biomedical applications, New Journal of Chemistry, 43(19), 2019, doi: 10.1039/c9nj01182j.
  • 8. Furutani K., Sato H., and Suzuki M., Influence of electrical conditions on performance of electrical discharge machining with powder suspended in working oil for titanium carbide deposition process, International Journal of Advanced Manufacturing Technology, 40(11–12), 2009, doi: 10.1007/ s00170-008-1420-x.
  • 9. Furutania K., Saneto A., Takezawa H., Mohri N., and Miyake H., Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid, Precis Eng, 25(2), 138–144, 2001, doi: 10.1016/S0141-6359(00)00068-4.
  • 10. Philip J.T., Mathew J., and Kuriachen B., Transition from EDM to PMEDM – Impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: A review, Journal of Manufacturing Processes, 64, 2021. doi: 10.1016/j. jmapro.2021.01.056.
  • 11. Al-Amin M., Abdul Rani A.M., Abdu Aliyu A.A., Abdul Razak M.A., Hastuty S., and Bryant M.G., Powder mixed-EDM for potential biomedical applications: A critical review, Materials and Manufacturing Processes. 2020. doi: 10.1080/10426914.2020.1779939.
  • 12. Meshramkar R., Shetty P., Nayak A., and Anehosur G. V., Surface treatment of zirconia implant, its surface roughness and its effect on osseointegration – a review, International Journal of Innovative Research in Medical Science, 4(5), 2019, doi: 10.23958/ijirms/vol04-i05/658.
  • 13. Algodi S.J., Murray J.W., Fay M.W., Clare A.T., and Brown P.D., Electrical discharge coating of nanostructured TiC-Fe cermets on 304 stainless steel, Surf Coat Technol, 307, 2016, doi: 10.1016/j. surfcoat.2016.09.062.
  • 14. Kruth J.-P., Stevens L., Froyen L., and Lauwers B., Study of the white layer of a surface machined by die-sinking electro-discharge machining, CIRP Annals, 44(1), 169–172, 1995, doi: 10.1016/ S0007-8506(07)62299-9.
  • 15. Furutania K., Saneto A., Takezawa H., Mohri N., and Miyake H., Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid, Precis Eng, 25(2), 138–144, 2001, doi: 10.1016/S0141-6359(00)00068-4.
  • 16. Prakash C., Kansal H.K., Pabla B.S., and Puri S., Potential of powder mixed electric discharge machin- ing to enhance the wear and tribological performance of <I>β</I>-Ti implant for orthopedic applications, Journal of Nanoengineering and Nanomanufacturing, 5(4), 2016, doi: 10.1166/jnan.2015.1245.
  • 17. Prakash C. and Uddin M.S., Surface modification of β-phase Ti implant by hydroaxyapatite mixed elec- tric discharge machining to enhance the corrosion resistance and in-vitro bioactivity, Surf Coat Technol, vol. 326, 2017, doi: 10.1016/j.surfcoat.2017.07.040.
  • 18. Davis R. et al., Enhanced micro-electric discharge machining-induced surface modification on biomedical Ti-6Al-4V alloy, J Manuf Sci Eng, 144(7) 2022, doi: 10.1115/1.4053110.
  • 19. Schubert A., Bui V.D., Schaarschmidt I., Berger T., and Martin A., Developments in powder mixed EDM and its perspective application for targeted surface modification, Procedia CIRP, 113, 100–119, 2022, doi: 10.1016/j.procir.2022.09.134.
  • 20. Nauryz N., Omarov S., Kenessova A., Pham T.T., Talamona D., and Perveen A., Powder-mixed microelectro-discharge machining-induced surface modification of titanium alloy for antibacterial properties, Journal of Manufacturing and Materials Processing, 7(6), 214, 2023, doi: 10.3390/jmmp7060214.
  • 21. ASTM E10-15, Standard test method for brinell hardness of metallic materials, ASTM International, no. June, 2012.
  • 22. ASTM G5-14, ASTM G5 Standard reference test method for making potentiodynamic anodic polarization measurements, Annual Book of ASTM Standards, 2014.
  • 23. Rao S.B. and Chowdhary R., Evaluation on the corrosion of the three Ni-Cr alloys with different composition, Int J Dent, 2011, doi: 10.1155/2011/397029.
  • 24. JSA-JIS T 0304, Testing method for metal release from metallic biomaterials, JSA, Jul. 2022. 25. Bhargav H.S., Shastri S.D., Poornav S.P., Darshan K.M., and Nayak M.M., Measurement of the zone of inhibition of an antibiotic, in: Proceedings of 6th International Advanced Computing Conference, IACC 2016, 2016. doi: 10.1109/IACC.2016.82.
  • 26. ISO 20645, Textile fabrics. Determination of antibacterial activity: Agar diffusion plate test, International Organization for Standardization, ISO. 2004.
  • 27. Meerson G.A. and Segorcheanu T., The affinity of niobium for oxygen, Soviet Atomic Energy, 13(6). 1963. doi: 10.1007/BF01312333.
  • 28. Weeks J.R., Neutron absorber materials for reactor control. Nuclear Science and Engineering, 15(1), 1963, doi: 10.13182/nse63-a26270.
  • 29. Prakash C., Kansal H.K., Pabla B.S., and Puri S., Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining, J Mater Eng Perform, 24(9), 2015, doi: 10.1007/ s11665-015-1619-6.
  • 30. Chang-Bin T., Dao-Xin L., Zhan W., and Yang G., Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications, Appl Surf Sci, 257(15), 2011, doi: 10.1016/j. apsusc.2011.01.120.
  • 31. Scully J.R., Budiansky N.D., Tiwary Y., Mikhailov A.S., and Hudson J.L., An alternate explanation for the abrupt current increase at the pitting potential, Corrosion Science, 50(2), 2008. doi: 10.1016/j. corsci.2007.08.002.
  • 32. Zhang Y., Davenport A.J., Burke B., Vyas N., and Addison O., Effect of Zr addition on the corrosion of Ti in acidic and reactive oxygen species (ROS)- containing environments, ACS Biomater Sci Eng, 4(3), 2018, doi: 10.1021/acsbiomaterials.7b00882.
  • 33. Azharuddin M. et al., A repertoire of biomedical applications of noble metal nanoparticles, Chemical Communications, 55(49), 2019, doi: 10.1039/ c9cc01741k.
  • 34. Armitage S.A., White M.A., and Wilson H.K., The determination of silver in whole blood and its application to biological monitoring of occupationally exposed groups, Annals of Occupational Hygiene, 40(3), 1996, doi: 10.1016/0003-4878(95)00076-3.
  • 35. Dakal T.C., Kumar A., Majumdar R.S., and Yadav V., Mechanistic basis of antimicrobial actions of silver nanoparticles, Front Microbiol, 7, 2016, doi: 10.3389/fmicb.2016.01831.
  • 36. Suresh A.K. et al., Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria, Environ Sci Technol, 44(13), 2010, doi: 10.1021/es903684r.
  • 37. Patil M.P. and Do Kim G., Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles, Applied Microbiology and Biotechnology, 101(1), 2017. doi: 10.1007/ s00253-016-8012-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d4c67dd1-17a1-44f8-96e7-5d76945d8839
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.