Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 159, nr 4 | 429--450
Tytuł artykułu

Neighborhood Systems : Rough Set Approximations and Definability

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The notions of approximation and definability in classical rough set theory and their generalizations have received much attention. In this paper, we study such generalizations from the perspective of neighborhood systems. We introduce four different types of definability, called interior definability, closure definability, interior-closure (IC) definability, and weak IC definability respectively. We also point out the relationship between IC definability and other types of definability for some special kinds of neighborhood systems. Several examples are presented to illustrate the concepts introduced in this paper.
Wydawca

Rocznik
Strony
429--450
Opis fizyczny
Bibliogr. 34 poz., tab.
Twórcy
autor
  • Department of Information Management, National Formosa University, Huwei 63201, Yunlin, Taiwan
autor
  • Department of Mathematics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
autor
Bibliografia
  • [1] Arenas FG. Alexandroff spaces, Acta Mathematica Universitatis Comenianae, 1999;LXVIII:17-25. URL http://eudml.org/doc/120504.
  • [2] Barot RB, and Lin TY. Granular computing on covering from the aspects of knowledge theory, Proceedings of the 2008 Annual Meeting of the North American Fuzzy Information Processing Society, 2008. doi:10.1109/NAFIPS.2008.4531346.
  • [3] Bonikowski Z, Bryniarski E, and Wybraniec-Skardowska U. Extensions and intentions in the rough set theory, Information Sciences, 1998;107(1-4):149-167. URL https://doi.org/10.1016/S0020-0255(97)10046-9.
  • [4] Csajbók ZE. Approximations of sets based on partial covering, Theoretical Computer Sciences, 2011. 412(42):5820-5833. URL https://doi.org/10.1016/j.tcs.2011.05.037.
  • [5] Cattaneo G. Abstract approximation spaces for rough theories, in: Rough Sets in Knowledge Discovery 1: Methodology and Applications (L. Polkowski, A. Skowron, Eds.), Physica-Verlag, 1998 pp. 59-98. ISBN-978-3-7908-1884-0.
  • [6] Chen DG, Wang CZ, and Hu QH. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets, Information Sciences, 2007;177(17):3500-3518. URLhttps://doi.org/10.1016/j.ins.2007.02.041.
  • [7] Ciucci D, Mihálydeá T, and Csajbók, ZE. On exactness, definability and vagueness in partial approximation spaces, Technical Sciences, 2015;18(3):203-212. URL http://uwm.edu.pl/wnt/technicalsc/tech_18_3/b05.pdf.
  • [8] Cohn PM. Universal algebra, Springer, 1981, ISBN 978-94-009-8399-1.
  • [9] Day MM. Convergence, closure, and neighborhoods, Duke Mathematical Journal, 1944;11:181-199. doi:10.1215/S0012-7094-44-01118-X.
  • [10] Grzymala-Busse JW, and Rzasa W. Definability and other properties of approximations for generalized indiscernibility relations, in: Transactions on Rough Sets XI (JF. Peters, A. Skowron Eds.), Springer-Verlag, 2010 pp. 14-39. doi.org/10.1007/978-3-642-11479-3_2.
  • [11] Hońko P. Compound approximation spaces for relational data, International Journal of Approximate Reasoning, 2016. 71:89-111. URL https://doi.org/10.1016/j.ijar.2016.02.002.
  • [12] Järvinen J. Properties of rough approximations, Journal of Advanced Computational Intelligence and Intelligent Informatics, 2005;9(5):502-505. URL https://www.fujipress.jp/jaciii/jc/jacii000900050502.
  • [13] Järvinen J, and Kortelainen J. A note on definability in rough set theory, in: Current Issues in Data and Knowledge Engineering (R. De Caluwe, G. De Tré J. Fodor, J. Kacprzyk, S. Zadrożny, B. De Baets Eds.), Akademicka Oficyna Wydawnicza EXIT, 2004 pp. 272-277. ISBN 9788387674717.
  • [14] Lin TY. Granular computing on partitions, coverings and neighborhood systems, Journal of Nanchang Institute of Technology, 2006;5(2):1-7. URL http://en.cnki.com.cn/Article_en/CJFDTotal-NCSB200602003.htm.
  • [15] Lin TY. Granular computing for binary relations: clustering and axiomatic granular operators, Proceedings of the North American Fuzzy Information Processing Society, 2004 pp. 430-433. doi:10.1109/NAFIPS.2004.1336321.
  • [16] Lin TY. Granular computing on binary relations I: data mining and neighborhood systems, in Rough sets and knowledge discovery (A. Skowron, L. Polkowski Eds.), Physica-Verlag, 1998 pp. 107-121. ISBN 978-3-7908-1884-0.
  • [17] Lin TY. Neighborhood systems - a qualitative theory for fuzzy and rough Sets, in: Advances in Machine Intelligence and Soft Computing (P. Wang Ed.), Duke University, North Carolina, 1997 pp. 132-155. ISBN 978-0964345638.
  • [18] Lin TY. Topological and fuzzy rough sets, in: Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets theory (R. Slowinski Ed.), Springer, 1992 pp. 287-304. ISBN 978-94-015-7975-9.
  • [19] Lin TY, and Syau YR. Granular mathematics - foundation and current state, Proceedings of the 2011 IEEE International Conference on Granular Computing, 2011 pp. 4-12. doi:10.1109/GRC.2011.6122560.
  • [20] Liu G, and Zhu W. The algebraic structures of generalized rough set theory, Information Sciences, 2008;178(21):4105-4113. URL https://doi.org/10.1016/j.ins.2008.06.021.
  • [21] Pawlak Z. Rough sets, International Journal of Computer and Information Science, 1982;11(5):341-356. doi:10.1007/BF01001956.
  • [22] Pawlak Z. Rough sets: theoretical aspects of reasoning about data, Dordrecht: Kluwer Academic Publishers, 1991. ISBN-978-0-7923-1472-1.
  • [23] Pei D. On definable concepts of rough set models, Information Sciences, 2007;177(19):4230-4239. URL https://doi.org/10.1016/j.ins.2007.01.020.
  • [24] Sierpinski W. (trans by Krieger C.) General Topology, Dover Publication Inc., Mineola, New York, 2000. ISBN: 978-0486411484.
  • [25] Skowron A, and Stepaniuk J. Tolerance approximation spaces, Fundamenta Informitcae, 1996;27(2-3):245-253. doi: 10.3233/FI-1996-272311.
  • [26] Slowinski R, and Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Transactions on Data and Knowledge Engineering, 2000;12(2):331-336. doi:10.1109/69.842271.
  • [27] Syau YR, and Jia L. Generalized rough sets based on reflexive relations, Communications in Information and Systems, 2012;12:233-249. URL http://dx.doi.org/10.4310/CIS.2012.v12.n4.a1.
  • [28] Syau YR, and Lin EB. Neighborhood systems and covering approximation spaces, Knowledge-Based Systems, 2014;66:61-67. URL https://doi.org/10.1016/j.knosys.2014.04.017.
  • [29] Syau YR, and Lin EB. On variable precision of generalized rough Sets, Proceedings of the 2014 IEEE International Conference on Granular Computing, 2014 pp. 271-274. doi:10.1109/GRC.2014.6982848.
  • [30] Syau YR, Lin EB, and Liau CJ. Neighborhood systems and variable precision of generalized rough sets, Fundamenta Informaticae, 2017;153(3):271-290. doi: 10.3233/FI-2017-1541.
  • [31] Zakowski W. Approximations in the space (U, Π), Demonstratio Mathematica, 1983;16:761-769. https://www.degruyter.com/view/j/dema.1983.16.issue-3/dema-1983-0319/dema-1983-0319.xml?format=INT.
  • [32] Zhang HP, Ouyang Y, and Wang Z. Note on “Generalized rough sets based on reflexive and transitive relations”, Information Sciences, 2009;179(4):471-473. URL https://doi.org/10.1016/j.ins.2008.10.009.
  • [33] Zhang YL, Li CQ, Lin ML, and Lin YJ. Relationships between generalized rough sets based on covering and reflexive neighborhood system, Information Sciences, 2015;319:56-67. URL https://doi.org/10.1016/j.ins.2015.05.023.
  • [34] Ziarko W. Variable precision rough set model, Journal of Computer and System Sciences, 1993;6:39-59. URL https://doi.org/10.1016/0022-0000(93)90048-2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d48d3460-64ee-4e9a-bf3d-fbd7ccfa7fcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.