Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 3 | 498--503
Tytuł artykułu

Temperature controlled dual hypoxic chamber design for in vitro ischemia experiments

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In vitro ischemia models are designed to study various aspects of hypo-perfusion, focusing on the consequences of acute events under body temperature. Cold ischemia is less investigated even though the beneficial effects of cooling is expected. The aim of the present work was to develop a device modeling cold and warm ischemia in vitro. Oxygen-glucose deprivation was applied with continuous nitrogen flow and glucose-free cell culture media to mimic ischemia. The temperature in both chambers were independently set between 4 and 37 °C. Samples were placed inside for the ischemic period, followed by a reperfusion stage under standard cell culture conditions. We tested rat calvaria bone pieces undergoing 1, 7, 12 and 24 h of ischemia at 4 and 37 °C. After 24 h of reperfusion, cell number was measured with a tetrazolium cell viability assay. One hour of warm ischemia paradoxically increased the post-reperfusion cell count, while cold-ischemia had an opposite effect. After 7 h of warm ischemia the cells were already unable to recover, while under cold ischemia 60% of the cells were still functioning. After 12 h of cold ischemia 50% of the cells were still be able to recover, while at 24 h even the low temperature was unable to keep the cells alive. The markedly different effect of warm and cold ischemia suggests that this newly designed systemis capable of reliable and reproducible modeling of ischemic conditions. Moreover, it also enables deeper investigations in the pathophysiology of cold ischemia at cellular and tissue level.
Wydawca

Rocznik
Strony
498--503
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
  • Institute of Clinical Experimental Research, Semmelweis University, 37-47 Tűzoltó str., 1094 Budapest, Hungary; University of Physical Education, Budapest, Hungary, marcell.bago@gmail.com
  • Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary, horvathy@yahoo.com
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury – a review. J Surg Res 2008;150(2):304–30. http://dx.doi.org/10.1016/j.jss.2007.12.747.
  • [2] Holloway PM, Gavins FN. Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke 2016;47(2):561–9. http://dx.doi.org/10.1161/STROKEAHA.115.011932.
  • [3] Shankaran Seetha. Neonatal encephalopathy: treatment with hypothermia. J Neurotrauma 2009;26(3):437–43.
  • [4] Salahudeen AK. Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am J Physiol Renal Physiol 2004;287(2):F181–7. http://dx.doi.org/10.1152/ajprenal.00098.2004.
  • [5] Dobrivojević M, Bohaček I, Erjavec I, Gorup D, Gajović S. Computed microtomography visualization and quantification of mouse ischemic brain lesion by non-ionic radio contrast agents. Croat Med J 2013;54(1):3–11.
  • [6] Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Cicr Physiol 2002;283(3):H1005–11. http://dx.doi.org/10.1152/ajpheart.00054.2002.
  • [7] Elliot KA, Rosenfeld M. Anaerobic glycolysis in brain slices after deprivation of oxygen and glucose. Can J Biochem Physiol 1958;36(7):721–30.
  • [8] Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 2010;1797(6–7):1171–7. http://dx.doi.org/10.1016/j.bbabio.2010.02.011.
  • [9] Simpkins CE, Montgomery RA, Hawxby AM, Locke JE, Gentry SE, Warren DS, et al. Cold ischemia time and allograft outcomes in live donor renal transplantation: is live donor organ transport feasible? AM J Transplant 2007; 7(1):99–107. http://dx.doi.org/10.1111/j.1600-6143.2006.01597.x.
  • [10] Totsuka E, Fung JJ, Lee MC, Ishii T, Umehara M, Makino Y, et al. Influence of cold ischemia time and graft transport distance on postoperative outcome in human liver transplantation. Surg Today 2002;32(9):792–9. http://dx.doi.org/10.1007/s005950200152.
  • [11] Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother 2011;38(2):125–42. http://dx.doi.org/10.1159/000327033.
  • [12] Schandl K, Horváthy DB, Doros A, Majzik E, Schwarz CM, Csönge L, et al. Bone-Albumin filling decreases donor site morbidity and enhances bone formation after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autografts. Int Orthop 2016;40(10):2097–104. http://dx.doi.org/10.1007/s00264-016-3246-8.
  • [13] Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 1991;142(2):257–65. http://dx.doi.org/10.1016/0022-1759(91)90114-U.
  • [14] Meloni BP, Meade AJ, Kitikomolsuk D, Knuckey NW. Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models. J Neurosci Methods 2011;195(1):67–74. http://dx.doi.org/10.1016/j.jneumeth.2010.11.023.
  • [15] Tong G, Walker C, Bührer C, Berger F, Miera O, Schmitt KR. Moderate hypothermia initiated during oxygen-glucose deprivation preserves HL-1 cardiomyocytes. Cryobiology 2015;70(2):101–8. http://dx.doi.org/10.1016/j.cryobiol.2014.12.007.
  • [16] Behmenburg F, Heinen A, Bruch LV, Hollmann MW, Huhn R. Cardioprotection by remote ischemic preconditioning is blocked in the aged rat heart in vivo. J Cardiothorac Vasc Anesth 2016. http://dx.doi.org/10.1053/j.jvca.2016.07.005. pii:S1053-0770 (16)30240-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d486ac35-d687-48ea-8380-1a00c526fbcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.