Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | nr 7 | 303--315
Tytuł artykułu

Integracja systemowa technologii akumulacji energii elektrycznej

Warianty tytułu
EN
System integration of electric energy storage technologies
Języki publikacji
PL
Abstrakty
PL
W artykule dokonano ogólnego omówienia najważniejszych zagadnień związanych wdrażaniem do systemu energetycznego technologii magazynowania energii elektrycznej, w tym przeglądu dostępnych i nowych koncepcji rozwiązań technologicznych. Celem artykułu jest przybliżenie czytelnikowi złożoności problematyki magazynowania energii elektrycznej we współczesnych systemach energetycznych, a także trendów rozwojowych, które w przyszłości mogą stanowić rzeczywiste rozwiązania infrastruktury technicznej rynku energii.
EN
In this paper the most important issues related to the implementation of electric energy storage technologies into the energy system are discussed in general, including a review of available and new concepts of technological solutions. The aim of this work is to familiarize the reader with the complexity of the issue of electricity storage in modern energy systems, as well as development trends that may in the future constitute real solutions for technical infrastructure of the energy market.
Wydawca

Czasopismo
Rocznik
Tom
Strony
303--315
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Politechnika Śląska, Katedra Techniki Cieplnej
  • Politechnika Śląska, Katedra Techniki Cieplnej
Bibliografia
  • [1] Łeal-Arcas A. i inni, The Great Energy Transition in the European Union. Elvia Press SRL. Chisinau, Mołdawia 2020. ISBN 978- 9975-3417 -1-4.
  • [2] Popczyk J. Od działań kryzysowych 2020 do elektroprosumeryzmu 2050. Transformacja energetyki w trybie przełomowym. "Energetyka" 2020, nr 5.
  • [3] Lund H., 0stergaard P.A., Conolly D., Skov I.A., Mathiesen S.V, Hvelplund F.K., Thellulsen J.Z., Soknees P., Energy Storage and Smart Energy Systems. "International Journal of Sustainable Planning and Management" 2016, Vol. 11, pp. 3-14.
  • [4] Bussar CH., St6cker P., Cai Z., Moraes L., Magnor D., Wiernes P., van Bracht N., Moser A., Sauer D.U., Large-scale integration of renewabIe energies and impact on storage demand in a European rene wabIe power system of 2050-Sensitivity study. "Journal of Energy Storage" 2016, 6:1-10.
  • [5] Lott M.C., Kim S., Technology Roadmap: Energy storage. "Energy Technology Perspectives" 2014, p. 64.
  • [6] Aneke M., Wang M., Energy storage technologies and real lite applications. A state of the art review. "Applied Energy" 2016, 179:350-377 .
  • [7] Blarke M.B., Lund H., The effectiveness of storage and reiocetion options in renewabIe energy systems. "Renevable Energy" 2008, Vo133, pp. 1499-1507.
  • [8] Salaei H., Keith D. w., Hugo R. J., Gompressed air energy storage with waste heat export: An Alberta case study. Enerqy Conversion and Management 2014, 78, pp. 114-124.
  • [9] Yao E., Wanga H., Wang L., Xi G., Marachat F., Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage. "Enerqy Conversion and Management" 2016, 118, pp. 377-386.
  • [10] Gotz M., Lelebvre J., Mors F., Me-Daniel Koch A., Gral F., Bajohr S., Reimert R., Kolb T, RenewabIe Power-to-Ges: A technological and economic review. "Renewable Energy" 2016, Vol. 85, pp.1371-1390.
  • [11] Bartela L, A hybrid energy storage system using compressed air and hydrogen as the energy carrier. "Enerqy" 2020, Vol. 196, 117088.
  • [12] Klemeś J.J (editor). Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Woodhead Publishing Limited, 2013. ISBN 978-0-85709-725-5 (online).
  • [13] Palizban O., Kauhaniemi K., Energy storage systems in modern grids - Matrix of technologies and applications. "Journal of Energy Storage" 2016, 6, pp. 248-259.
  • [14] Sternberg A, Bardow A, Power-to-What? - Environmental assessment of energy storage systems. "Enerqy and Environmental Science" 2015, 8 (2), pp. 389-400.
  • [15] International Energy Agency: Technology Roadmap. Energy Storage, OECD/IEA, Paris, France, 2014. www.iea.org.
  • [16] Energy Storage News. BNEF predicts 305GWh of energy storage worldwide by 2030.21 November 2017. https://www.energy- storage.news/news/bnel-predicts-305gwh-of-energy-storage- worldwide-by-2030.
  • [17] Joint EASE/EERA recommendations for a European energy storage technology development roadmap. 2017 update. www.ease-storage.eu.
  • [18] Akhil A.A., Huff G., Currier A.B., Kaun B.C., Rastler D.M., Bingqing Chen S., Cotter A. L., Bradshaw D.T., Gauntlett W.D., OOE/EPRI Electricity Storage Handbook in Gollaboration with NREGA. Sandia National Laboratories. Raport SAND2015-1002, September 2014.
  • [19] Budt M., Woli D., Span R., Van J., A review on compressed air energy storage: Basic principles, past milestones and recent developments. "Applied Energy" 2016, 170, pp. 250-268.
  • [20] Geissbühler L., Becattini V., Zanganeh G., Zavattoni S., Barbato M., Haselbacher A., Steinleld A., Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage. "Journal ot Energy Storage" 2018, Vol. 17, pp. 129-139.
  • [21] Yuan Zhang, Ke Yang, Xuemei Li, Jianzhong Xu, The thermo- dynamic effect of air storage chamber model on Advanced Adiabatic Gompressed Air Energy Storage System. "Renewable Energy" 2013, 57.
  • [22] Petrov M. P., Arghandeh A., Broadwater A., Concept and application of distributed compressed air energy storage systems integrated in utility networks. Proceedings of the ASME 2013 Power Conference Power 2013 July 29 - August 1, Boston, Massachusetts, USA.
  • [23] Santi F., Mini-A-CAES/2-TES: Above Ground Compressed Air Energy Storage 1 to 10 MW combined with a two combined with a two-level Thermal Energy Storage. Proceedings of the Energy Storage Forum. Rome, 2012.
  • [24] Electric Power Research Institute. Advanced Compressed Air Energy Storage Demonstration. Press release http://www.electrictechnologycenter.com/pdl/EPRI%20CaES%20Demo.pdf.
  • [25] Yao E., Wanga H., Wang L., Xi G., Marechal F., Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage. "Energy Conversion and Management" 2016, 118, pp. 377-386.
  • [26] Sciacovelli A., Smith D., Navarro H., Li Y., Ding Y., Liquid air energy storage - Operation and performance of the tirst pilot plant in the world. Proceedings of the ECOS 2016 - the 29th International Conference On Efficiency, Cost, Optimization, Simulation And Environmental Impact Of Energy Systems. June 19-23, 2016, Portorož, Slovenia.
  • [27] Kantharaj B., Garvey S., Pimm A, Gompressed air energy storage with liquid air capa city extension. "Applied Energy" 2015, 157, pp. 152-64.
  • [28] Gülen C., Adams S. S., Haley R. M., Carlton C., Gompressed Gas Energy Storage. "Power Engineering" 2017, Issue 8, Vol. 121.
  • [29] Bocklisch T, Hybrid Energy Storage Systems for RenewabIe Energy. "Applications. Energy Procedia" 2015, 73, pp. 103-111.
  • [30] Bergins C., Tran K.-C., Buddenberg T, Stetansson B., Koytsoumpa E.-I., Duarte M. J., Power to fuel as a sustainable business model for cross-sectorel energy storage in industry and power plants. Proceedings of the POWER-GEN Europe 2016. Milan, 21-23 June 2016.
  • [31] Dumont O., Dickes R., Ishmael M., Lemort V., Mapping of performance of pumped thermal energy storage (Garnot battery) using waste heat recovery. Materiały 5th International Seminar on ORG Power Systems, September 9-11, 2019, Athens, Greece.
  • [32] Eppinger B., Zigan L., Will S., Simulation of a pumped thermal energy storage based on a reversible HP-ORG-system. Materiały 5th International Seminar on ORC Power Systems, September 9-11, 2019, Athens, Greece.
  • [33] Walter O., Tremel A., Prenzel M., Becker S., Schaeler J., Techno-economic analysis of hybrid energy storage concepts via flowsheet simulations, cost modeling and energy system design. "Enerqy Conversion and Management" 2020, 218, 112955.
  • [34] Perna A., Minutillo M., Cicconardi S.P., Jannelli E., Scarfogliero S., Performance Assessment ot Electric Energy Storage (EES) systems based on reversible solid oxide cel/. .Enerqy Procedia" 2016, 101, 1087-1094.
  • [35] Mottaghizadeh P., Santhanam S., Heddrich M.P., Friedrich K.A., Rinaldi F., Process modeling of a reversible solid oxide cell (r-SOG) energy storage system utilizing commercially available SOC reector. "Enerqy Conversion and Management" 2017, 142, 477-493.
  • [36] Vialetto G., Noro M., Coibertaido P., Rokni M., Enhancement of energy generation efficiency in industrial facilities by SOFC e SOEC systems with additional hydrogen production. "International Journal of Hydrogen Energy" 2019, Vol. 44, 9608-9620.
  • [37] Kofler R., Butera G., Jensen S. H., Clausen L. R., Novel hybrid electricity storage system producing synthetic natural gas by integrating biomass gasitication with pressurized solid oxide cells. Materiały 32. Międzynarodowej Konferencji Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems ECOS 2019. Wrocław, 23-28 czerwca 2019.
  • [38] Zhang X., Chen H., Xu Y., Li W., He F., Guo H., Huang Y., Distributed generation with energy storage systems: A case study. "Applied Energy" 2017, 204,1251-1263.
  • [39] Llamas B., Ortega M. F., Barthelemy G., de Godosb I. Acien F. G., Development of an efficient and sustainable energy storage system by hybridization of compressed air and biogas technologies (BIO-CAES). "Enerqy Conversion and Management" 2020, 210,112695.
  • [40] Nakhamkin M., Chiruvolu M., Patel M., Byrd S., Schainker R., Marean J., Second Generation of CAES Technology - Performance, Operations, Economics, Renewabie Load Management, Green Energy. POWER-GEN International, December 8-10, 2009, Las Vegas Convention Center, Las Vegas, NV.
  • [41] Briola S., Gabbrielli R., Delgado A., Energy and economic performance assessment of the novel integration of an advanced configuration of liquid air energy storage plant with an existing large-scale natural gas combined cycle. "Enerqy Conversion and Management" 2020, 205, 112434.
  • [42] She X., Zhang T., Cong L., Peng X., Li C., Luo Y., Ding Y., Flexible integration of liquid air energy storage with liquetied natural gas regasification for power generation enhancement. "Applied Energy" 2019, Vol. 251, 113355.
  • [43] Valera-Medina A., Xiao H., Owen-Jones M., David W.I.F., Bowen P.J., Ammonia for power. "Proqress in Energy and Combustion Science" 2018, Vol. 69, pp. 63-102. https://doi.org/10.1016/j. pecs.2018.07.001.
  • [44] Zhang H., Wang L., Van Herle J. Marechal F., Desideri U., Techno-Economic Optimization of C02-to-Methanol with Solid-Oxide Electrolyzer. "Enerqies'' 2019, 12, 3742, DOI:10.3390/en12193742.
  • [45] Świrk K., Grzybek T., Motak M., Tri-reforming as a process of CO2 utilization and a novel concept of energy storage in chemical products. E3S Web of Conferences 14, 02038 (2017). DOI: 10.1051/e3sconf/20171402038.
  • [46] Horizon 2020 - Work Programme 2018-2020. Secure, clean and efficient energy. European Commission Decision C(2018)4708 0124 July 2018.
  • [47] D'Aprile P., Newman J., Pinner D., The new economics of energy storage. Raport agencji McKinsey & Company. 2016. https://www.mckinsey.com/business-functions/sustainability/our-insights/the-new-economics-of-energy-storage#
  • [48] Teng F., Strbac G., Business cases for energy storage with multiple service provision. "Journal of Modern Power Systems and Clean Energy" 2016, 4(4):615-625. DOI: 10.1007/s40565-016-0244-1.
  • [49] Vecchi A., Li Y., Sciacovelli A., Analysis of mufti-mode operation of liquid air energy storage (LAES) plant - Link between provision of grid balancing services and thermodynamic performance. Materiały 32. Międzynarodowej Konferencji Efficiency, Cost, Optimization, Simulation And Environmental Impact Of Energy Systems ECOS 2019. Wrocław, 23-28 czerwca 2019.
  • [50] Li Y., Wang J., Han Y.,Zhao Q., Fang X., Cao Z., Robust and opportunistic scheduling of district integrated natural gas and power system with high wind power penetration considering demand flexibility and compressed air energy storage. "Journal of Cleaner Production" 2020, Vol. 256, 120456.
  • [51] Technology Roadmap Hydrogen and Fuel Cells. IEA 2015 https://www.iea.org/reports/technology-roadmap-hydrogen- and-fuel-cells, Available 12.06.2020.
  • [52] Maroulmashat A., Fowler M., Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. "Enerqies" 2017, 10, 1089; DOI:10.3390/en10081089.
  • [53] Zhang H., Lin G., Chen J., Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production. "International Journal of Hydrogen Energy" 2010, 35.
  • [54] Ni M., Leung M.K.H., Leung D.Y.C., Energy and exergy analysis of hydrogen production by a proton exchanger membrance (PEM) electrolyzer plant. "Enerqy Conversion and Management" 2008, Vol. 49.
  • [55] Martinez-Frias J., Pham A.Q., Aceves S.M., A natural gas essisted steam electrolyzer for high-efficiency production of hydrogen. "Int, J. Hydrogen Energy" 2003, 28, pp. 483-490.
  • [56] Schaal et al., Methanation of CO2 - storage of renewabie energy in a gas distribution system Energy, Sustainability and Society. DOI 10.1186/s13705-014-0029-1.
  • [57] Chmielniak T., Lepszy S., Mońka P., Energetyka wodorowa - podstawowe problemy. "Polityka Energetyczna - Energy Policy Journal" 2017, tom 20, zeszyt 3, s. 55-66, ISSN 1429-6675.
  • [58] Polskie Sieci Energetyczne. Data on the power system - Available at: <https://www.pse.pl/dane-systemowe> [accessed 11.03.2019].
  • [59] Szargut J., Exergy Method: Technical and Ecological Applications, WIT Press, Southampton-Boston, 2005.
  • [60] Szargut J., Ziębik A., Stanek w., Depletion of the non-reneweble natural exergy resources as a measure of the ecological cost, "Enerqy Convers. Manag." 2002, 43, 1149-1163.
  • [61] Stanek W., Czarnowska L., Gazda W., Simla T., Thermo-ecotogical cost of electricity from renewabie energy sources. "Renewabie Energy" 2018, 115, S. 87-96.
  • [62] Simla T., Stanek W., Czarnowska L., Thermo-ecological cost of electricity generated in wind turbine systems Proceedings of ECOS 2017, The 30TH International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, July 2 - July 6, 2017, San Diego, California, USA.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d4643a7a-c6ff-47b7-9169-c24872304cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.