Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e134, 2023
Tytuł artykułu

Application of the path-repairing technique and virus optimization algorithm for the dimensional synthesis of four-bar mechanisms

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers the synthesis of the four-bar mechanism. It is treated here as an optimization problem, in which an objective function is defined. To solve this problem, a metaheuristic called the virus optimization algorithm is employed. Furthermore, a new path-repairing technique recently published by Sleesongsom and Bureerat is applied instead of the very common technique related to the application of a penalty function. This makes the search by means of the metaheuristic more efficient. Furthermore, the obtained results are very accurate.
Wydawca

Rocznik
Strony
art. no. e134, 2023
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Jana Pawła II 24, 60‑965 Poznań, Poland, jakub.grabski@put.poznan.pl
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Jana Pawła II 24, 60‑965 Poznań, Poland
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Jana Pawła II 24, 60‑965 Poznań, Poland
Bibliografia
  • 1. Goldberg D. Genetic algorithms in search optimization and machine learning. Reading: Addison-Wesley Professional; 1989.
  • 2. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;1979(220):671-80. https://doi.org/10.1126/science.220.4598.671.
  • 3. Dorigo M, Caro GD, Gambardella LM. Ant algorithms for discrete optimization. Artif Life. 1999;5:137-72. https://doi.org/10.1162/106454699568728.
  • 4. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE. p. 1942-8.
  • 5. Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 2002;22:52-67. https://doi.org/10.1109/MCS.2002.1004010.
  • 6. Kaveh A, Farhoudi N. A new optimization method: Dolphin echolocation. Adv Eng Softw. 2013;59:53-70. https://doi.org/10.1016/j.advengsoft.2013.03.004.
  • 7. Grabski JK, Walczak T, Buśkiewicz J, Michałowska M. Comparison of some evolutionary algorithms for optimization of the path synthesis problem. In: AIP Conference Proceedings. 2018.
  • 8. Sulaiman M, Salhi A, Selamoglu BI, Kirikchi OB. A plant propagation algorithm for constrained engineering optimisation problems. Math Probl Eng. 2014;2014:1-10. https://doi.org/10.1155/2014/627416.
  • 9. Rabanal P, Rodríguez I, Rubio F. Using river formation dynamics to design heuristic algorithms. In: Unconventional Computation. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 163-77.
  • 10. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct. 2012;110-111:151-66. https://doi.org/10.1016/j.compstruc.2012.07.010.
  • 11. Zhou H, Cheung EHM. Analysis and optimal synthesis of adjustable linkages for path generation. Mechatronics. 2002;12:949-61. https://doi.org/10.1016/S0957-4158(01)00034-4.
  • 12. Cabrera JA, Simon A, Prado M. Optimal synthesis of mechanisms with genetic algorithms. Mech Mach Theory. 2002;37:1165-77. https://doi.org/10.1016/S0094-114X(02)00051-4.
  • 13. Laribi MA, Mlika A, Romdhane L, Zeghloul S. A combined genetic algorithm-fuzzy logic method (GA-FL) in mechanisms synthesis. Mech Mach Theory. 2004;39:717-35. https://doi.org/10.1016/j.mechmachtheory.2004.02.004.
  • 14. Smaili A, Diab N. Optimum synthesis of hybrid-task mechanisms using ant-gradient search method. Mech Mach Theory. 2007;42:115-30. https://doi.org/10.1016/j.mechmachtheory.2006.01.018.
  • 15. Ebrahimi S, Payvandy P. Efficient constrained synthesis of path generating four-bar mechanisms based on the heuristic optimization algorithms. Mech Mach Theory. 2015;85:189-204. https://doi.org/10.1016/j.mechmachtheory.2014.11.021.
  • 16. Bureerat S, Sleesongsom S. Constraint handling technique for four-bar linkage path generation using self-adaptive teaching-learning-based optimization with a diversity archive. Eng Optim. 2020. https://doi.org/10.1080/0305215X.2020.1741566.
  • 17. Qaiyum A, Mohammad A. A novel approach for optimal synthesis of path generator four-bar planar mechanism using improved harmony search algorithm. Aust J Mech Eng. 2022. https://doi.org/10.1080/14484846.2022.2066848.
  • 18. Huang Q, Yu Y, Zhang K, Li S, Lu H, Li J, Zhang A, Mei T. Optimal synthesis of mechanisms using repellency evolutionary algorithm. Knowl Based Syst. 2022;239:107928. https://doi.org/10.1016/j.knosys.2021.107928.
  • 19. Kang Y-H, Lin J-W, You W-C. Comparative study on the synthesis of path-generating four-bar linkages using metaheuristic optimization algorithms. Appl Sci. 2022;12:7368. https://doi.org/10.3390/app12157368.
  • 20. Liang Y-C, Cuevas Juarez JR. A novel metaheuristic for continuous optimization problems: virus optimization algorithm. Eng Optim. 2016;48:73-93. https://doi.org/10.1080/0305215X.2014.994868.
  • 21. Liang Y-C, Cuevas JJR. Multilevel image thresholding using relative entropy and Virus Optimization Algorithm. In: 2012 IEEE Congress on Evolutionary Computation. IEEE; 2012. p. 1-8.
  • 22. Liang Y-C, Cuevas J. An automatic multilevel image thresholding using relative entropy and meta-heuristic algorithms. Entropy. 2013;15:2181-209. https://doi.org/10.3390/e15062181.
  • 23. Liang Y-C, Juarez JRC. Harmony search and virus optimization algorithm for multi-objective combined economic energy dispatching problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2016. p. 3947-54.
  • 24. Omenzetter P, Turnbull H. Comparison of two optimization algorithms for fuzzy finite element model updating for damage detection in a wind turbine blade. In: Shull PJ, editor. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII. SPIE; 2018. p. 60.
  • 25. Aungkulanon P, Luangpaiboon P. Evolutionary computation role in improving an accuracy of forecasting mortality data. Int J Adv Soft Comput Appl. 2018;10:71-83.
  • 26. Behnood A, Mohammadi Golafshani E, Hosseini SM. Determinants of the infection rate of the COVID-19 in the U.S. using ANFIS and virus optimization algorithm (VOA). Chaos Solitons Fractals. 2020;139:110051. https://doi.org/10.1016/j.chaos.2020.110051.
  • 27. Liang Y-C, Cuevas Juarez JR. A self-adaptive virus optimization algorithm for continuous optimization problems. Soft comput. 2020;24:13147-66. https://doi.org/10.1007/s00500-020-04730-0.
  • 28. Grabski JK, Mrozek A. Identification of elastoplastic properties of rods from torsion test using meshless methods and a metaheuristic. Comput Math Appl. 2021;92:149-58. https://doi.org/10.1016/j.camwa.2021.03.024.
  • 29. Alizade RI, Novruzbekov IG, Sandor GN. Optimization of four-bar function generating mechanisms using penalty functions with inequality and equality constraints. Mech Mach Theory. 1975;10:327-36. https://doi.org/10.1016/ 0094-114X(75)90077-4.
  • 30. Bulatović RR, Dordević SR. On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations. Mech Mach Theory. 2009;44:235-46. https://doi.org/10.1016/j.mechmachtheory.2008.02.001.
  • 31. Cabrera JA, Ortiz A, Nadal F, Castillo JJ. An evolutionary algorithm for path synthesis of mechanisms. Mech Mach Theory. 2011;46:127-41. https://doi.org/10.1016/j.mechmachtheory.2010.10.003.
  • 32. Lin W-Y. Optimum synthesis of planar mechanisms for path generation based on a combined discrete fourier descriptor. J Mech Robot. 2015. https://doi.org/10.1115/1.4030584.
  • 33. Sleesongsom S, Bureerat S. Optimal synthesis of four-bar linkage path generation through evolutionary computation with a novel constraint handling technique. Comput Intell Neurosci. 2018;2018:1-16. https://doi.org/10.1155/2018/5462563.
  • 34. Freudenstein F. Design of four-link mechanisms. PhD thesis, Columbia University. 1954.
  • 35. Freudenstein F. An analytical approach to the design of four-link mechanisms. Trans Am Soc Mech Eng. 1954;76:483-92.
  • 36. Russell K, Shen J. Planar four-bar motion and path generation with order and branching conditions. J Adv Mech Des Syst Manuf. 2011;5:264-73. https://doi.org/10.1299/jamdsm.5.264.
  • 37. Hongying Y, Dewei T, Zhixing W. Study on a new computer path synthesis method of a four-bar linkage. Mech Mach Theory. 2007;42:383-92. https://doi.org/10.1016/j.mechmachtheory.2006.05.003.
  • 38. Bai S. A note on the univariate nonic derived from the coupler curve of four-bar linkages. Mech Mach Theory. 2021;162:104344. https://doi.org/10.1016/j.mechmachtheory.2021.104344.
  • 39. Qaiyum A, Mohammad A. Optimal synthesis of six bar mechanism using particle swarm optimization. Int J Recent Technol Eng (IJRTE). 2020;8:5287-92. https://doi.org/10.35940/ijrte.F9802.038620.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d45b2a3b-d836-4f07-b193-a0a5911d17eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.