Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 7 | 265--285
Tytuł artykułu

Evaluation of Ecological Adaptability of Oilseed Radish (Raphanus sativus L. var. oleiformis Pers.) Biopotential Realization in the System of Criteria for Multi-Service Cover Crop

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of a ten-year cycle of studying oilseed radish in the variant of two sowing dates. The technological regulations of the applied sowing options correspond to the classical scheme of spring sowing period and intermediate (post-harvest, post-mowing varieties) in the summer sowing period. The research evaluated the first block of indicators of the multi-service cover crop (MSCC) criteria system. The assessment of the first component of the MSCC system included indicators of the formed aboveground and underground plant biomass with details on such components as the dynamics of mass growth and soil coverage, the structure of the aboveground mass by the proportion of leaves, stems and generative part, complex morphometry by the vitality index, plant survival and root system productivity for both sowing dates. Significant levels of ecological adaptability of oilseed radish with the possibility of forming levels of total bioproductivity in the range of 4–7 t·ha-1 of dry matter at a wide range of average daily temperatures (14–22°C) and precipitation of 29–290 mm were established. It was determined that at high rates of growth processes with the level of achievement of the ‘ground cover’ indicator at 70% on 45–50 days after sowing, high plant survival at the level of 70–80% during intermediate summer use, the formation of an optimized structure with a leafiness at the level of 30–49% at the milestone date of use, with an achievable root system productivity coefficient of 4.7 (in dry matter) and the formation of total plant biomass at the level of 2.0–4.0 t·ha-1 of dry matter even under conditions of IDM<10 and Kh< 0.5, oilseed radish should be classified as a crop that fully corresponds the criteria of the first general productive block of the MSCC system.
Wydawca

Rocznik
Strony
265--285
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Abdulraheem M.I., Tobe O.K. 2022. Green manure for agricultural sustainability and improvement of soil fertility. Farming & Management, 7, 1–8. https://doi.org/10.31830/2456-8724.2022.FM-101
  • 2. Agarwal R., Sacre P., Sarma S.V. 2015. Mutual dependence: A novel method for computing dependencies between random variables. ArXiv, 1506.00673v1, 9, 1.
  • 3. Agathokleous E., Belz R.G., Kitao M., Koike T., Calabrese E.J. 2019. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. Journal of Forestry Research, 30, 1569–1580. https://doi.org/10.1007/s11676-018-0863-7
  • 4. Ahmad P., Bhardwaj R., Tuteja N. 2012. Plant signalling under abiotic stress environment. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, 297–323. https://doi.org/10.1007/978-1-4614-0815-4
  • 5. Alonso-Ayuso M., Gabriel J.L., Quemada M. 2014. The kill date as a management tool for cover cropping success. PLoS ONE, 9, e109587.
  • 6. Ansari M.A., Choudhury B.U., Layek J., Das A., Lal R., Mishra V.K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Research, 218, 105318. https://doi.org/10.1016/j.still.2022.105318
  • 7. Asgari A., Darzi-Naftchali A., Nadi M., Saberali S.F. 2021. Improvement in canola yield and growth indices and water-use efciency with subsurface drainage in a humid climate. Paddy Water Environment, 19(1), 23–33.
  • 8. Bacher H., Sharaby Y., Walia H., Peleg Z. 2021. Modifying root/shoot ratios improves root water influxes in wheat under drought stress. bioRxiv, 455065. https://doi.org/10.1101/2021.08.04.455065
  • 9. Baltas E. 2007. Spatial Distribution of Climatic Indices in Northern Greece. Meteorological Applications 14, 69–78. https://doi.org/10.1002/met.7
  • 10. Bhogal A., White C., Morris N. 2019. Project Report No. 620 Maxi Cover Crop: Maximising the benefits from cover crops through species selection and crop management. AHDB Cereals & Oilseeds is a part of the Agriculture and Horticulture Development Board (AHDB).
  • 11. Bláha L. 2021. Importance of root-shoot ratio for crops production: A review. Current Topics in Agricultural Sciences, 1, 37–49. https://doi.org/10.9734/bpi/ctas/v1/12112D
  • 12. Bodner G., HImmelbauer M., Loiskandl W., Kaul H.-P. 2010. Improved evaluation of cover crop species by growth and root factors. Agronomy for Sustainable Development, 30, 455–464. https://doi.org/10.1051/agro/2009029
  • 13. Boselli R., Fiorini A., Santelli S., Ardenti F., Capra F., Maris S.C., Tabaglio V. 2020. Cover crops during transition to no-till maintain yield and enhance soil fertility in intensive agro-ecosystems. Field Crops Research, 255, 107871. https://doi.org/10.1016/j.fcr.2020.107871
  • 14. Chaddock R.E. 1925. Principles and Methods of Statistics (1st Edition), Houghton Miffin Company. The Riverside Press, Cambridge.
  • 15. Couëdel, A., Kirkegaard, J., Alletto, L. Justes, É. 2019. Cruciferlegume cover crop mixtures for biocontrol: Toward a new multiservice paradigm. Advances in Agronomy, 157, 55–139. https://doi.org/10.1016/bs.agron.2019.05.003
  • 16. Deligios P.A., Farci R., Sulas L., Hoogenboom G., Ledda L. 2013. Predicting growth and yield of winter rapeseed in a Mediterranean environment: Model adaptation at a feld scale. Field Crops Research, 144, 100–112. https://doi.org/10.1016/j.fcr.2013.01.017
  • 17. Dorsainvil F., Durr C.C., Justes E.E., Carrera A. 2005. Characterisation and modelling of white mustard (Sinapis alba L.) emergence under several sowing conditions. European Journal of Agronomy, 23(2), 146–158. https://doi.org/10.1016/j.eja.2004.11.002
  • 18. Duff J., van Sprang C., O’Halloran J., Hall Z. 2020. Guide to Brassica biofumigant cover crops managing soilborne diseases in vegetable production systems. Horticulture Innovation through VG16068 Optimising cover cropping for the Australian vegetable industry. State of Queensland. Department of Agriculture and Fisheries.
  • 19. Dzvene A.R., Tesfuhuney W.A., Walker S., Ceronio G. 2023. Management of cover crop intercropping for live mulch on plant productivity and growth resources: A review. Air, Soil and Water Research, 16. https://doi.org/10.1177/11786221231180079
  • 20. Fageria N.K., Baligar V.C., Wright R.J. 1997. Soil environment and root growth dynamics of field crops. Recent research development in Agronomy, 1, 15–58.
  • 21. Feller C., Favre P., Janka A., Zeeman S.C., Gabriel J.P., Reinhardt D. 2015. Mathematical modeling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PLOS ONE, 10(7), e0127905. https://doi.org/10.1371/journal.pone.0127905
  • 22. Florentín M.A., Peñalva M., Calegari A., Translated R.D., Mcdonald, M.J. 2010. Green manure/cover crops and crop rotation in conservation agriculture on small farms; integrated crop management: Rome, Italy 12.
  • 23. Guinet M., Voisin A-S., Nicolardot B. 2023. Potential C and N mineralisation of shoot and root residues from ten grain legume species as related to their biochemical characteristics. World Journal of Agriculture and Soil Science, 8(4), WJASS. MS.ID.000691.
  • 24. Han J, Zhang Z, Cao J, Luo Y, Zhang L, Li Z, Zhang J. 2020. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 12(2), 236. https://doi.org/10.3390/rs12020236
  • 25. Herrmann C., Idler C., Heiermann M. 2016. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresource Technology, 206, 2335. https://doi.org/10.1016/j.biortech.2016.01.058
  • 26. Heuermann D., Gentsch N., Boy J., Schweneker D., Feuerstein U., Groß J., Bauer B., Guggenberger G., von Wirén N. 2019. Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Scientific Reports, 9(1), 11531. https://doi.org/10.1038/s41598-019-48060-0
  • 27. Honcharuk I., Tokarchuk D., Gontaruk Y., Hreshchuk H. 2023. Bioenergy recycling of household solid waste as a direction for ensuring sustainable development of rural areas. Polityka Energetyczna, 26(1), 23–42. https://doi.org/10.33223/epj/161467
  • 28. Israt I.J., Parimal B.K. 2023. Residual effect of green manure on soil properties in green manuretransplant aman-mustard cropping pattern. Indian Journal of Agricultural Research, 57(1), 67–72. https://doi.org/10.18805/IJARe.AF-696
  • 29. IUSS Working Group WRB 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Reference Base for Soil Resources 2014.
  • 30. Jing Q., Shang J., Qian B., Hoogenboom G., Hufman T., Liu J., Ma B.L., Geng X., Jiao X., Kovacs J., Walters D. 2016. Evaluation of the CSM-CROPGRO-Canola model for simulating canola growth and yield at West Nipissing in Eastern Canada. Agronomy Journal, 108(2), 1–10.
  • 31. Justes E., Richard G., 2017. Contexte, Concepts et Definition des cultures intermediaires multiservices. Innovations Agronomiques, 62, 17–32.
  • 32. Kemper R., Bublitz T.A., Müller P., Kautz T., Döring T.F., Athmann, M. 2020. Vertical root distribution of different cover crops determined with the prof ile wall method. Agriculture, 10, 503. https://doi.org/10.3390/agriculture10110503
  • 33. Kenjaev Yu., Davronova F.P. 2023 Study on the effect of the green manure application on soil fertility. IOP Conf. Ser.: Earth Environment Science, 1142, 012112.
  • 34. Konuntakiet T. 2020. Integrated modelling of whole-plant metabolism and growth. University of Oxford. PhD Thesis.
  • 35. Kou X, Han W., Kang J. 2022. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers Plant Science, 13, 1085409. https://doi.org/10.3389/fpls.2022.1085409
  • 36. Kul R., Ekinci M., Turan M., Ors S., Yildirim E. 2021. How Abiotic Stress Conditions Affects Plant Roots. IntechOpen. https://doi.org/10.5772/intechopen.95286
  • 37. Latief A., Raihana K.H., Sabah P., Syed S.M. 2017. Experimental Agrometeorology: A Practical Manual. Cham: Springer International Publishing.
  • 38. Lavergne S., Vanasse A., Thivierge M.-N., Halde C. 2021. Using fall-seeded cover crop mixtures to enhance agroecosystem services: A review. Agrosystems, Geosciences & Environment, 4, e20161, https://doi.org/10.1002/agg2.20161
  • 39. Lee C.-R., Kim S.H., Oh Y., Kim Y.J., Lee S.-M. 2023. Effect of green manure on water-stable soil aggregates and carbon storage in paddy soil. Korean Journal of Soil Science and Fertilizer, 56(2), 191198. https://doi.org/10.7745/KJSSF.2023.56.2.191
  • 40. Lei B., Wang J., Yao H. 2022. Ecological and environmental benefits of planting green manure in paddy fields. Agriculture, 12(2), 223. https://doi.org/10.3390/agriculture12020223
  • 41. Li W.G.M., Yang X.X., Huang C.G., Xue N.W., Xia Q., Liu X.L., Zhang X.Q., Yang S., Yang Z.P., Gao Z.Q. 2019. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Agricultural Sciences in China, 52, 2664–2677.
  • 42. Liu X.H., Zhou X., Deng L.C., Fan L.Y., Qu L., Li, M. 2020. Decomposition characteristics of rapeseed green manure and effect of nutrient release on soil fertility. Hunan Agricultural Science, 416, 39–44.
  • 43. Lohosha R., Palamarchuk V., Krychkovskyi V. 2023. Economic efficiency of using digestate from biogas plants in Ukraine when growing agricultural crops as a way of achieving the goals of the European Green Deal. Polityka Energetyczna, 26(2), 161–182. https://doi.org/10.33223/epj/163434
  • 44. Lopez G., Ahmadi S.H., Amelung W., Athmann M., Ewert F., Gaiser T., Gocke M.I., Kautz T., Postma J., Rachmilevitch S., Schaaf G., Schnepf A., Stoschus A., Watt M., Yu P., Seidel S.J. 2023. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Frontiers Plant Science, 13, 1067498. https://doi.org/10.3389/fpls.2022.1067498
  • 45. Lucadamo E.E., Holmes A.A., Wortman S.E., Yannarell A.C. 2022. Post-termination effects of cover crop monocultures and mixtures on soil inorganic nitrogen and microbial communities on two organic farms in Illinois. Frontiers Soil Science, 2, 824087. https://doi.org/10.3389/fsoil.2022.824087
  • 46. Lövgren E. 2022. Complete removal of biomass from oilseed radish as a cover crop decreased nitrous oxide emissions. Master’s degree project. Swedish University of Agricultural Sciences.
  • 47. Mazur V., Alieksieievа O., Mazur K., Alieksieiev O. 2023. Ecological and Economic Aspects of the Formation of Highly Productive Soybean Crops. Journal of Ecological Engineering, 24(12), 124–129. https://doi.org/10.12911/22998993/173008
  • 48. McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., Yepez E.A. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  • 49. Moral F.J., Rebollo F.J., Paniagua L.L., GarcíaMartín A., Honorio F. 2016. Spatial Distribution and Comparison of Aridity Indices in Extremadura, Southwestern Spain. Theoretical and Applied Climatology, 126, 801–814. https://doi.org/10.1007/s00704-015-1615-7
  • 50. Pryshliak N., Pronko L., Mazur, K., Palamarenko Y. 2022. The development of the state strategy for biofuel production from agrobiomass in Ukraine. Polityka Energetyczna, 25(2), 163–178. https://doi.org/10.33223/epj/150091
  • 51. Quintarelli V., Radicetti E., Allevato E., Stazi S.R., Haider G., Abideen Z., Bibi S., Jamal A., Mancinelli R. 2022. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture, 12, 2076. https://doi.org/10.3390/agriculture12122076
  • 52. Rajković D., Marjanović Jeromela A., Pezo L., Lončar B., Zanetti F., Monti A., Kondić Špika A. 2022. Yield and quality prediction of winter rapeseed–artificial neural network and random forest models. Agronomy, 12(1), 58. https://doi.org/10.3390/agronomy12010058
  • 53. Rameeh V. 2014. Multivariate Regression Analyses of Yield Associated Traits in Rapeseed (Brassica napus L.) Genotypes. Hindawi, Article ID 626434. http://dx.doi.org/10.1155/2014/626434
  • 54. Ramírez-García J., Carrillo J.M., Ruiz M., AlonsoAyuso M., Quemada. M. 2015. Multicriteria Decision Analysis Applied to Cover Crop Species and Cultivars Selection. Field Crops Research, 175, 106–115.
  • 55. Ramírez-García J., Gabriel J.L., Alonso-Ayuso M., Quemada M. 2014. Quantitative characterization of f ive cover crop species. The Journal of Agricultural Science, 153, 1174–1185. http://dx.doi.org/10.1017/S0021859614000811
  • 56. Redin M., Recous S., Aita C., Chaves B., Pfeifer I.C., Bastos L.M., Pilecco G.E., Giacomini S.J. 2018. Root and shoot contribution to carbon and nitrogen inputs in the topsoil layer in no-tillage crop systems under subtropical conditions. Revista Brasileira de Ciência do Solo, 42, e0170355.
  • 57. Safaei A.R., Rouzbehan Y., Aghaalikhani M. 2022. Canola as a potential forage. Translational Animal Science, 6(3), txac100. http://dx.doi.org/10.1093/tas/txac100
  • 58. Saseendran S.A., Nielsen D.C., Ma L., Ahuja L.R., 2010. Adapting CROPGRO for simulating spring canola growth with both RZWQM2 and DSSAT 4.0. Agronomy Journal, 102(6), 1606–1621.
  • 59. Scavo A., Fontanazza S., Restuccia A., Pesce G.R., Abbate C., Mauromicaleet G. 2022. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development, 42(5), 93. http://dx.doi.org/10.1007/s13593-022-008250ff.ffhal-04201630
  • 60. Singh D., Devi K.B., Ashoka P., Bahadur R., Kumar N., Devi O.R., Shahni Y.S. 2023. Green manure: aspects and its role in sustainable agriculture. International Journal of Environment and Climate Change, 13(11), 39–45. http://dx.doi.org/10.9734/ijecc/2023/v13i113142
  • 61. Snapp S.S., Swinton S.M., Labarta R., Mutch D., Black J.R., Leep R., Nyiraneza J., O’neil K. 2005. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agronomy Journal, 97(1), 322–332. http://dx.doi.org/10.2134/agronj2005.0322a
  • 62. Snecdecor G.W., Cochran W.G. 1991. Statistical Methods, 8th Edition. Wiley-Blackwell.
  • 63. Talgre L. 2013. Biomass production of different green manure crops and their effect on the succeeding crops yield. PhD Thesis. Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences. Tartu.
  • 64. Test Guidelines for the conduct of tests for distinctness. uniformity and stability of Fodder Radish (Raphanus sativus L. var. oleiformis Pers.). 2017. Geneva. UPOV.
  • 65. Thornley J.H.M. 1998. Modelling shoot: root relations: the only way forward? Annals of Botany, 81, 165–171.
  • 66. Thorup-Kristensen K., Kirkegaard J. 2016. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Annals Bottany, 118(4), 573–592. http://dx.doi.org/10.1093/aob/mcw122
  • 67. Tixiera P, Lavigneb C., Álvareza S., Gauquierb A., Blancharda M.G., Ripochea A., Acharda R. 2010. Model evaluation of cover crops, application to eleven species for banana cropping systems. European Journal of Agronomy, 34(2), 53–61. http://dx.doi.org/10.1016/j.eja.2010.10.004
  • 68. Tjørve K.M.C., Tjørve E. 2017. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the UnifiedRichards family. PLoS One, 12(6), e0178691. http://dx.doi.org/10.1371/journal.pone.0178691
  • 69. Tokarchuk D., Pryshliak N., Yaremchuk N., Berezyuk S. 2023. Sorting, logistics and secondary use of solid household waste in Ukraine on the way to European integration. Ecological Engineering and Environmental Technology, 24(1), 207–220. http://dx.doi.org/10.12912/27197050/154995
  • 70. Toom M., Talgre L. Pechter P., Narits L., Tamm S., Lauringson E. 2019. The effect of sowing date on cover crop biomass and nitrogen accumulation. Agronomy Research, 17(4), 1779–1787. http://dx.doi.org/https://doi.org/10.15159/AR.19.164
  • 71. Tribouillois H., Cohan J.-P., Justes E. 2016 Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant and Soil, 401, 347–364. http://dx.doi.org/10.1007/s11104-015-2734-8
  • 72. Tsytsiura, Y.H. 2020. Modular-vitality and ideotypical approach in evaluating the efficiency of construction of oilseed radish agrophytocenosises (Raphanus sativus var. oleifera Pers.). Agraarteadus 31(2), 219–243. http://dx.doi.org/10.15159/jas.20.27
  • 73. Tsytsiura Y. 2023. Estimation of biomethane yield from silage fermented biomass of oilseed radish (Raphanus sativus l. var. oleiformis Pers.) for different sowing and harvesting dates. Agronomy Research 21(2), 940–978.http://dx.doi.org/10.15159/AR.23.101
  • 74. Tsytsiura Y. 2024. Ecological approach to the identication of the degree of phytophage damage based on chlorophyll fluorescence induction in oilseed radish (Raphanus sativus L. var. oleiformis Pers.). Journal of Ecological Engineering, 25(2), 227–243. https://doi.org/10.12911/22998993/176983
  • 75. Ugrenović V., Filipović V., Jevremović S., Marjanović J.A., Popović V., Buntić A., Delić D. 2019. Effect of Brassicaceae as cover crops. Selekcija i semenarstvo, 25(2), 1–8. http://dx.doi.org/10.5937/SelSem1902001U (in Serbian).
  • 76. Waha K., Dietrich J.P., Portmann F.T., Siebert S., Thornton P.K., Bondeau A., Herrero M. 2020. Multiple cropping systems of the world and the potential for increasing cropping intensity. Global Environmental Change, 64, 102131. http://dx.doi.org/10.1016/j.gloenvcha.2020.102131
  • 77. Wahlström E.M., Hansen E.M., Mandel A., Garbout A., Kristensen H.L., Munkholm L.J. 2015. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen. European Journal of Agronomy, 71, 1–9. http://dx.doi.org/10.1016/J.EJA.2015.07.002
  • 78. Wallander S., Smith D., Bowman M., Claassen R. 2021. Cover Crop Trends, Programs, and Practices in the United States, EIB 222, U.S. Department of Agriculture, Economic Research Service.
  • 79. Werker A.R., Jaggard K.W. 1997. Modelling asymmetrical growth curves that rise and then fall: applications to foliage dynamics of sugar beet (Beta vulgaris L.). Annals of Botany, 79, 657–665.
  • 80. White C.A., Holmes H.F., Morris N.L., Stobart R.M. 2016. A review of the benefits, optimal crop management practices and knowledge gaps associated with different cover crop species. Research Review No. 90, AHDB Cereals & Oilseeds.
  • 81. Williams J.D., McCool D.K., Reardon C.L., Douglas C.L., Albrecht S.L., Rickman R.W. 2013. Root:shoot ratios and belowground biomass distribution for Pacific Northwest dryland crops. Journal of Soil and Water Conservation, 68(5), 349–360. http://dx.doi.org/10.2489/jswc.68.5.349
  • 82. Wittwer R.A., van der Heijden, Marcel G.A. 2020. Cover crops as a tool to reduce reliance on intensive tillage and nitrogen fertilization in conventional arable cropping systems. Field Crops Research, 249, 107736. http://dx.doi.org/10.1016/j.fcr.2020.107736
  • 83. Wollford A.R., Jarvis P.E. 2017. Cover, catch and companion crops. Benefits, challenges and economics for UK growers. Game & Wildlife Trust The Allerton Project.
  • 84. Wong J. 2018. Handbook of statistical analysis and data mining applications. Cambridge, Academic Press.
  • 85. Yadav D., Kumawat A., Kumar P., Kumar S., Singh D., Kumar, D. 2021. Chemical Fertilization to Green Manuring: Moving towards Sustained Production. Farm Information Bureau, 9(1), 15–19.
  • 86. Zlobin Yu., Kovalenko I., Klymenko H., Kyrylchuk K., Bondarieva L., Tykhonova O., Zubtsova I. 2021. Vitality Analysis Algorithm in the Study of Plant Individuals and Populations. The Open Agriculture Journal, 15, 119129. http://dx.doi.org/10.2174/1874331502115010119
  • 87. Ţiţei V. 2022. The quality of fresh and ensiled biomass from white mustard, Sinapis alba, and its potential uses. Scientific Papers. Series A. Agronomy, 1(65), 559–566.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d4508645-eba3-4422-bb7d-eaff378289ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.