Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 2 | 134--146
Tytuł artykułu

Application of a Thermal Mannequin to the Assessment of the Heat Insulating Power of Protective Garments for Premature Babies

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the new tool for measuring thermal insulating power of garments for premature babies under coupled heat and moisture transport was developed. The thermal mannequin corresponds to the body weight and size of a premature baby born in the thirty fourth week of pregnancy. The mannequin surface temperature can be set at various levels, while the heat loss is measured in W/m2. The mannequin is divided into eleven independent heating zones and seven independent zones of moisture evolution. The study also presents the test results of heat insulating power obtained for the newly developed garment set with commercially available garment set for babies, conducted under different climatic conditions. The results exhibit the advantage of the new material construction of the garment over the commercially available one.
Wydawca

Rocznik
Strony
134--146
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology
  • Lodz University of Technology, Department of Material and Commodity Sciences and Textile Metrology
  • Lodz University of Technology, Department of Knitting Technology
Bibliografia
  • [1] M. Baumert, A. Łukomska, Ł. Krzych, J. Magnucki, M. Pacula, Zaburzenia w okresie adaptacyjnym noworodków urodzonych “blisko terminu porodu”. Ginekologia Polska, 2011, 82, 119-125
  • [2] M.Davidoff, T.Dias, K.Damus, et al. Changes in the gestational age distribution among U.S. Singelton birth: impact on rates of late preterm birth, 1992 to 2002. Seminars in Perinatology, 2006, 30, 8-15.
  • [3] E.J. Holland, C.A. Wilson, R.M. Laing, B.E. Niven. Microclimate ventilation of infant bedding, International Journal of Clothing Science and Technology. 1999, 11, 4, 226-239
  • [4] C.A. Wilson, R.M. Laing, T. Tamura. Intrinsic “dry” thermal resistance of dry infant bedding during use: Part 2: estimated vs measured, International Journal of Clothing Science and Technology. 2004, 16, 3, 310–323
  • [5] O. K. Helder, P. Mulder, J.B. van Goudoever. Computer-Generated Versus Nurse-Determined Strategy for Incubator Humidity and Time to Regain Birthweight. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 2008, 37, 255-261.
  • [6] T.I. Sherman, J.S. Greenspan, N. St Clair, S.M. Touch, T.H. Shaffer. Optimizing the Neonatal Thermal Environment. Neonatal Network, 2006, 25, 4, 251-60.
  • [7] K. Fairchild, D. Sokora, J. Scott, S. Zanelli. Therapeutic hypothermia on neonatal transport: 4-year experience in a single NICU. Journal of Perinatology, 2010, 30, 5, 324–329.
  • [8] M. Vento, P.Y. Cheung, M. Aguar. The first golden minutes of the extremely-low-gestational-age neonate: a gentle approach. Neonatology, 2009, 95, 4, 286–298.
  • [9] E.D. Bowman, R.N.D. Roy. Control of temperature during newborn transport: an old problem with new difficulties. Journal of Pediatrics and Child Health, 1997, 33, 5, 398–401.
  • [10] M. E Anderson, T.A. Longhofer, W. Philips, D.E. McRay. Passive cooling to initiate hypothermia for transported encephalopathy newborns. Journal of Perinatology, 2007, 27,9, 592-593.
  • [11] B. Agourram, V. Bach, P. Tourneux, G. Krim, S. Delnaud, J. P. Libert. Why wrapping premature neonates to prevent hypothermia can predispose to overheating, Journal of Applied Physiology, 108, 1674–1681, 2010.
  • [12] Anonymous. EN ISO 7933. Ergonomics of thermal environment – Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. European Committee for Standardization, Brussels, 2004.
  • [13] E.B. Elabbassi, K. Chardon, V. Bach, F. Telliez, S. Delanaud, J.P. Libert. Head insulation and heat loss in naked and clothed newborns using a thermal mannequin. Medical Physics, 2002, 29, 6, 1090-1096.
  • [14] PN-EN ISO 15831:2006, Odzież - Właściwości fizjologiczne - Pomiar izolacyjności cieplnej z zastosowaniem manekina termicznego.
  • [15] D. Bolin, I. Holmer, I. Sarman, R. Tunell. The use of an “infant thermal manikin” for the assessment of different neonatal heating equipments for premature newborn babies. Physiological Models, IEEE Engineering in Medicine and Biology Society, 11th Annual International Conference, 1989, 0252-0253.
  • [16] Anonymous. ISO 7726:2002. Ergonomics of the thermal environment – Instruments for measuring physical quantities. 2002.
  • [17] R. Korycki. Local Optimization of Bonnet Thickness in Global Heat Balance of Neonate. Fibres & Textiles in Eastern Europe, 2017, 25, 1(121), 81-88.
  • [18] E.B. Elabbassi, K. Belghazi, S. Delanaud, J.P. Libert. Dry heat loss in incubator: comparison of two premature newborn sized manikins. European Journal of Applied Physiology, 2004, 92, 6, 679-682.
  • [19] Z. Ostrowski, M. Rojczyk, J. Łaszczyk, I. Szczygieł, J. Kaczmarczyk, A. J.Nowak. Infant care bed natural convection heat transfer coefficient – measurements and estimation. Przegląd Elektrotechniczny, 2014, 90, 5, 122-125.
  • [20] Umbach K.H. “Tragekomfort mit zweiflächigen Textilien unter Verwendung von PP Fasern”. Chemiefasern- Textiindustrie, 1/1986 s. 64.
  • [21] M.Bühler, Ch. Iyer. “Untersuchung und Weiterentwicklungsmöglichkeiten von funktionellen Maschenwaren auf Sportbekleidungssektor”. Wirkerei und Strickerei Technik, 1986 nr 6 s. 611-615, Wirkerei und Strickerei Technik, 1986 nr 9 s. 904-911, Wirkerei und Strickerei Technik, 1986 nr 10 s. 1042-1047.
  • [22] Pillar B. “Integrierte Maschenwaren mit einem höheren Feuchtetransport”. Wirkerei und Strickerei Technik,7/1987 s. 721-728.
  • [23] E. Szucht. “Światowe kierunki rozwoju dzianin o wysokim komforcie fizjologicznym”. Technik Włókienniczy, 1990 nr 3, s.85-88.
  • [24] K.H. Umbach. “Bekleidungsphysiologische Gesichtspunkte zur Entwicklung von Sportkleidung”. Wirkerei und Strickerei Technik, 1993 nr 2 s. 108-114.
  • [25] K Kowalski, G. Wykin-Orlikowska, T. Manduk-Chuchla. “Właściwości biofizyczne dzianin w badaniach laboratoryjnych i teście użytkowym”. Przegląd Włókienniczy, 2003, nr 3, s. 6-9.
  • [26] B. Wilbik-Hałgas, R. Danych B. Więcek, K. Kowalski. Air and Water Vapour Permeability in double-Layered Knitted Fabrics with Different Raw Materials Fibres & Textiles in Eastern Europe. 2006 Vol. 14 Nr 3 s. 77-81.
  • [27] Kowalski K., Janicka J., Massalska-Lipińska T., Nyka M. Impact of Raw Material combinations on the Biophysical Parameters and Underwear Microclimate of Two-Layer Knitted Materials. FIBRES & TEXTILES in Eastern Europe 2010, Vol. 18, No. 5 (82) pp. 64-70.
  • [28] R.H. Wildnauer, R. Kennedy. Transepidermal water loss of human newborns, Journal of Investigative Dermatology, 1970, 54, 483–486.
  • [29] N. Rutter, D. Hull. Water loss from the skin of term and preterm babies, Archives of Disease in Childhood, 1979, 54, 11, 858-868.
  • [30] I. Krucińska, R.Korycki, E. Skrzetuska, K. Kowalski, A. Puszkarz, Wybrane zagadnienia z metrologii użytkowej odzieży funkcjonalnej, Monografia Politechniki Łódzkiej, ISBN 978-83-7283-808-7, Łódź, 2016.
  • [31] Newton Thermal Manikin Operator’s Manual, Measurement Technology Northwest.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d43411a0-b1d1-4555-9916-02e2c7d6ed94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.