Czasopismo
2023
|
No. 65 (1)
|
249--259
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We modelled changes in relative sea level (RSL) in the Beibu Gulf region, South China Sea, caused by the melting of the Pleistocene ice sheets, i.e., glacial isostatic adjustment (GIA). Both the temporal evolution of RSL between the last glacial maximum and present day as well as present-day rates were derived. The interplay of changing ocean water volume, gravitational induced water redistribution and solid Earth deformations due to the varying surface loads is accounted for by means of the sea-level equation. The modelled RSL curves for the Beibu Gulf region reveal the shape typical for regions far away from the former centres of glaciation, exhibiting a pronounced Holocene sea-level highstand between 4 and 5 kyr before the present. A general good agreement was found between modelled and empirical RSL curves, although differences in the timing and magnitude of the highstand were revealed. In addition to GIA-induced RSL, we also modelled the effect of RSL variations due to sediment accumulation during marine isotopic stages MIS 4 to MIS 1 descending mainly from Hainan Island, but also other terrestrial sources from the Chinese (and Vietnamese) mainland. Estimates for the sediment loading originate from seismic surveys and dated sediment cores. We found that RSL changes caused by sediment loading are at least three orders of magnitude smaller than those induced by GIA. The present-day rates of both RSL effects are too small to be detectable by geodetic observations and cannot be discriminated from prominent tectonic signals.
Czasopismo
Rocznik
Tom
Strony
249--259
Opis fizyczny
Bibliogr. 45 poz., map., rys., wykr.
Twórcy
autor
- Institute of Planetary Geodesy, Technical University of Dresden, Germany, andreas.groh@tu-dresden.de
autor
- Institute of Marine and Environmental Sciences, University of Szczecin, Poland, jan.harff@io-warnemuende.de
Bibliografia
- 1. Allen, P.A., 2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge University Press. https://doi.org/10.1017/9781316135754.008
- 2. Amante, C., Eakins, B., 2009. Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M
- 3. Borówka, R.K., Osadczuk, A., Li, Z., Miluch, J., Osadczuk, K., Bieniek, B., Maciąg, Łukasz, Tomkowiak, J., Chen, H., 2020. Sedimentological and geochemical imprint of environmental changes in late pleistocene palaeodelta-hosting deposits, south-west of the Hainan Island (south China Sea). J. Asian. Earth Sci. 201, 104502. https://doi.org/10.1016/j.jseaes.2020.104502
- 4. Bradley, S., Milne, G., Horton, B., Zong, Y., 2016. Modelling sea level data from China and Malay-Thailand to estimate Holocene ice-volume equivalent sea level change. Quaternary Sci. Rev. 137, 54-68. https://doi.org/10.1016/j.quascirev.2016.02.002
- 5. Cao, L., Jiang, T., Wang, Z., Zhang, Y., Sun, H., 2015. Provenance of upper miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern south China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages. Mar. Geol. 361, 136-146. https://doi.org/10.1016/j.margeo.2015.01.007
- 6. Chen, H., Harff, J., Qiu, Y., Osadczuk, A., Zhang, J., Tomczak, M., Cui, Z., Cai, G., Wen, M., Li, L., 2016. Last Glacial Cycle and seismic stratigraphic sequences offshore western Hainan Island, NW South China Sea. In: Clift, P.D., Harff, J., Wu, J., Qiu, Y. (Eds.), River-Dominated Shelf Sediments of East Asian Seas. Geological Society of London. https://doi.org/10.1144/SP429.9
- 7. Clift, P.D., Harff, J., Wu, J., Qiu, Y., 2016. Introduction to the river-dominated shelf sediments of the east Asian seas. Geological Society of London, Special Publications 429, 1-8. https://doi.org/10.1144/SP429.15
- 8. Clift, P.D., Sun, Z., 2006. The sedimentary and tectonic evolution of the yinggehai-song hong basin and the southern hainan margin, south China Sea: Implications for Tibetan uplift and monsoon intensification. J. Geophys. Res. Sol. Ea. 111. https://doi.org/10.1029/2005JB004048
- 9. Farrell, W., Clark, J., 1976. On Postglacial Sea Level. Geophys. J. Int. 46, 647-667. https://doi.org/10.1111/j.1365-246X.1976.tb01252.x
- 10. Feng, Y., Zhan, W., Chen, H., Jiang, T., Zhang, J., Osadczuk, A., Yao, Y., Li, W., Sun, J., Guo, L., Huang, W., Li, S., Zhang, W., 2018. Seismic characteristics and sedimentary record of the late pleistocene delta offshore southwestern Hainan Island, north-western south China Sea. Interpretation J. Sub. 6, SO31-SO43. https://doi.org/10.1190/INT-2018-0012.1
- 11. Groh, A., Richter, A., Dietrich, R., 2017. Recent Baltic Sea Level Changes Induced by Past and Present Ice Masses. In: Harff, J., Furmanczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East-Past and Future Projection, Coastal Research Library, 19. Springer, Heidelberg, 55-68. https://doi.org/10.1007/978-3-319-49894-2_4
- 12. Hanebuth, T., Stattegger, K., Bojanowski, A., 2009. Termination of the last glacial maximum sea-level lowstand: The Sunda-Shelf data revisited. Global Planet. Change. 66, 76-84. https://doi.org/10.1016/j.gloplacha.2008.03.011
- 13. Hanebuth, T.J., Saito, Y., Tanabe, S., Vu, Q.L., Ngo, Q.T., 2006. Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) and adjacent regions. Quatern. Int. 145—146, 119-134. https://doi.org/10.1016/j.quaint.2005.07.008
- 14. Hanebuth, T.J., Stattegger, K., Schimanski, A., Lüdmann, T., Wong, H.K., 2003. Late pleistocene forced-regressive deposits on the Sunda shelf (southeast Asia). Mar. Geol. 199, 139-157. https://doi.org/10.1016/S0025-3227(03)00129-4
- 15. Hanebuth, T.J., Voris, H.K., Yokoyama, Y., Saito, Y., Okuno, J., 2011. Formation and fate of sedimentary depocentres on southeast Asia’s Sunda shelf over the past sea-level cycle and biogeographic implications. Earth-Sci. Rev. 104, 92-110. https://doi.org/10.1016/j.earscirev.2010.09.006
- 16. Harff, J., Endler, R., Emelyanov, E., Kotov, S., Leipe, T., Moros, M.,Olea, R.A., Tomczak, M., Witkowski, A., 2011. Late Quaternary Climate Variations reflected in Baltic Sea Sediments. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Springer, Berlin, 99-132.
- 17. Harff, J., Flemming, N.C., Groh, A., Hünicke, B., Lericolais, G., Meschede, M., Rosentau, A., Sakellariou, D., Uścinowicz, S., Zhang, W., Zorita, E., 2017. Sea level and climate. In: Flemming, N., Harff, J., Moura, D., Burgess, A., Bailey, G. (Eds.), Submerged Landscapes of the European Continental Shelf. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118927823.ch2
- 18. Harff, J., Leipe, T., Waniek, J.J., Zhou, D., 2013. Depositional environments and multiple forcing factors at the south China Sea’s northern shelf - special issue. J. Coastal Res. 66 (sp1). https://doi.org/10.2112/1551-5036-66.sp1.iii
- 19. Harff, J., Meyer, M., 2011. Coastlines of the Baltic Sea - zones of competition between geological processes and a changing climate: Examples from the southern Baltic. In: Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin. Springer, Berlin, Heidelberg, 149-164. https://doi.org/10.1007/978-3-642-17220-5_7
- 20. Hu, Y., Hao, M., Ji, L., Song, S., 2016. Three-dimensional crustal movement and the activities of earthquakes, volcanoes and faults in Hainan Island, China. Geod. Geodyn. 7, 284-294. https://doi.org/10.1016/j.geog.2016.05.008
- 21. Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1-45. https://doi.org/10.1111/bor.12142
- 22. Lebedev, S., Nolet, G., 2003. Upper mantle beneath southeast Asia from s velocity tomography. J. Geophys. Res. Sol. Ea. 108. https://doi.org/10.1029/2000JB000073
- 23. Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F., Li, Z., 2009. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. In. 173, 33-50. https://doi.org/10.1016/j.pepi.2008.10.013
- 24. Lin, C., Li, S., Zhang, Q., et al., 1997. Subsidence and stretching of some mesozoic and cenozoic rift basins in east China. In: Basin analysis, globe sedimentology geology and sedimentology. Proceeding 30th International Geology Congress, 176-196.
- 25. Lobo, F.J., Ridente, D., 2014. Stratigraphic architecture and spatiotemporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Mar. Geol. 352, 215-247. https://doi.org/10.1016/j.margeo.2013.10.009
- 26. Miluch, J., Osadczuk, A., Feldens, P., Harff, J., Maciąg, Łukasz, Chen, H., 2021. Seismic profiling-based modeling of geometry and sedimentary architecture of the late pleistocene delta in the Beibu gulf, SW of Hainan Island (south China Sea). J. Asian Earth Sci. 205, 104611. https://doi.org/10.1016/j.jseaes.2020.104611
- 27. Mitrovica, J., Milne, G., 2002. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quaternary Sci. Rev. 21, 2179-2190. https://doi.org/10.1016/S0277-3791(02)00080-X
- 28. Mitrovica, J., Peltier, W., 1991. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. 96, 20053-20071. https://doi.org/10.1029/91JB01284
- 29. Ni, Y., Harff, J., Xia, Z., Waniek, J.J., Endler, M., Schulz-Bull, D.E., 2016. Post-glacial mud depocentre in the southern Beibu gulf. Post-glacial mud depocentre in the southern Beibu gulf, 429. Geological Society of London, Special Publications, 87-98. https://doi.org/10.1144/SP429.13
- 30. Peltier, W., 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36, 603-689. https://doi.org/10.1029/98RG02638
- 31. Peltier, W., 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Pl. Sc. 32, 111-149. https://doi.org/10.1146/annurev.earth.32.082503.144359
- 32. Richter, A., Groh, A., Dietrich, R., 2012. Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys. Chem. Earth 53—54, 43-53. https://doi.org/10.1016/j.pce.2011.04.011
- 33. Schimanski, A., Stattegger, K., 2005. Deglacial and holocene evolution of the Vietnam shelf: stratigraphy, sediments and sea-level change. Mar. Geol. 214, 365-387. https://doi.org/10.1016/j.margeo.2004.11.001
- 34. Shi, X., Kohn, B., Spencer, S., Guo, X., Li, Y., Yang, X., Shi, H., Gleadow, A., 2011. Cenozoic denudation history of southern Hainan Island, south China Sea: Constraints from low temperature thermochronology. Tectonophysics 504, 100-115. https://doi.org/10.1016/j.tecto.2011.03.007
- 35. Spada, G., Antonioli, A., Cianetti, S., Giunchi, 2006. Glacial isostatic adjustment and relative sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-D spherical Earth. Geophys. J. Int. 165, 692-702. https://doi.org/10.1111/j.1365-246X.2006.02969.x
- 36. Spada, G., Stocchi, P., 2007. SELEN: A Fortran 90 program for solving the ‘‘sea-level equation’’. Comput. Geosci. 33, 538-562. https://doi.org/10.1016/j.cageo.2006.08.006
- 37. Tanabe, S., Hori, K., Saito, Y., Haruyama, S., Vu, V.P., Kitamura, A., 2003. Song Hong (Red River) delta evolution related to millennium-scale holocene sea-level changes. Quaternary Sci. Rev. 22, 2345-2361. https://doi.org/10.1016/S0277-3791(03)00138-0
- 38. Tanabe, S., Saito, Y., Lan Vu, Q., Hanebuth, T.J., Lan Ngo, Q., Kitamura, A., 2006. Holocene evolution of the Song Hong (red river) delta system, northern Vietnam. Sediment. Geol. 187, 29-61. https://doi.org/10.1016/j.sedgeo.2005.12.004
- 39. Tjallingii, R., Stattegger, K., Stocchi, P., Saito, Y., Wetzel, A., 2014. Rapid flooding of the southern Vietnam shelf during the early to mid-holocene. J. Quaternary Sci. 29, 581-588. https://doi.org/10.1002/jqs.2731
- 40. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J., McManus, J., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci. Rev. 21, 295-305. https://doi.org/10.1016/S0277-3791(01)00101-9.ePILOG
- 41. Xie, X., Müller, R.D., Ren, J., Jiang, T., Zhang, C., 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern south China Sea. Mar. Geol. 247, 129-144. https://doi.org/10.1016/j.margeo.2007.08.005
- 42. Xiong, P., Dudzińska-Nowak, J., Harff, J., Xie, X., Zhang, W., Chen, H., Tao, J., Chen, H., Miluch, J., Feldens, P., Maciąg, Łukasz, Osadczuk, A., Meng, Q., Zorita, E., 2020. Modeling paleogeographic scenarios of the last glacial cycle as a base for source-to-sink studies: An example from the northwestern shelf of the south China Sea. J. Asian Earth Sci. 203, 104542. https://doi.org/10.1016/j.jseaes.2020.104542
- 43. Yao, Y., Harff, J., Meyer, M., Zhan, W., 2009. Reconstruction of paleocoastlines for the northwestern south China Sea since the last glacial maximum. Sci. China Ser. D 52, 1127-1136. https://doi.org/10.1007/s11430-009-0098-8
- 44. Zhong, G., Geng, J., Wong, H.K., Ma, Z., Wu, N., 2004. A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern south China Sea. Earth Planet. Sc. Lett. 223, 443-459. https://doi.org/10.1016/j.epsl.2004.04.039
- 45. Zhu, M., Graham, S., McHargue, T., 2009. The red river fault zone in the Vinggehai basin, south China Sea. Tectonophysics 476, 397-417. https://doi.org/10.1016/j.tecto.2009.06.015
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d3dc4386-bdae-4257-9981-d460bb571685