Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Tom 26 | 160--167
Tytuł artykułu

Augmentation of Pool Boiling Heat Transfer Using the Laser Treatment Technology

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses applying the laser technique to modify the copper heater surface. The interaction of the laser beam with the base material leads to its melting, and various shapes can be obtained during the process. The study is focused on the boiling heat transfer analyses of the specimen in the form of a disc with longitudinal microfins of a height of 0.5 mm. The optical microscope was used to determine the morphology of the surface. The laser beam generated significant roughness, which benefitted the overall thermal performance. Considerable heat transfer augmentation was recorded for the laser–made surface in relation to the untreated sample, which served as a reference. The heat flux was several times higher, while the laser–treated sample's boiling curves were shifted to the area of smaller temperature differences. Two boiling models proved unsuccessful in predicting the heat exchange process occurring during pool boiling of distilled water and ethyl alcohol. According to the Smirnov, Xin and Chao models, the average differences between the experimental data and calculation results were ca. 93 kW/m2 and 116 kW/m2 for water, 78 kW/m2 and 68 kW/m2 for ethanol. boiling, heat exchanger, laser beam
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
160--167
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Poland , orman@tu.kielce.pl
  • Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava-Poruba, Czech Republic
  • Faculty of Mechanical Engineering, Kielce University of Technology, Poland
  • Faculty of Mechanical Engineering, Kielce University of Technology, Poland
Bibliografia
  • Dudkiewicz, E., Fidorów-Kaprawy, N., Szałański, P. (2022). Environmental Benefits and Energy Savings from Gas Radiant Heaters' Flue-Gas Heat Recovery. Sustainability, 14, 8013. https://doi.org/10.3390/su14138013
  • Ho, J.Y., Wong, K.K., Leong, K.C. (2016). Saturated pool boiling of FC-72 from enhanced surfaces produced by Selective Laser Melting. International Journal Heat and Mass Transfer, 99, 107-121. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.073
  • Ho, J.Y., Wong, K.K., Leong, K.C., Yang, C. (2015). Nucleate pool boiling from selective laser melted micro-grooves/microcavities surfaces with HFE-7000. Proceedings of the First Thermal and Fluids Engineering Summer Conference New York City, USA, 1917-1928. https://doi.org/10.1615/TFESC1.mph.013076
  • Holubčík, M., Trnka, J., Čajová Kantová, N. (2024). Using heat exchanger for construction of electrostatic precipitator in a small heat source, Journal of Electrostatics, 128, 103884. https://doi.org/10.1016/j.elstat.2023.103884
  • Hożejowska, S., Kaniowski, R., Pastuszko, R. (2021). Application of the Trefftz Method for Pool Boiling Heat Transfer on Open Microchannel Surfaces. Heat Transfer Engineering, 43, 362-370. https://doi.org/10.1080/01457632.2021.1874669
  • Janaszek, A., Kowalik, R. (2023). Analysis of heavy metal contaminants and mobility in sewage sludge-soil mixtures for sustainable agricultural practices. Water, 15, 3992. https://doi.org/10.3390/w15223992
  • Janaszek, A., Silva, A.F.d., Jurišević, N., Kanuchova, M., Kozáková, Ľ., Kowalik, R. (2024). The assessment of sewage sludge utilisation in closed-loop economy from an environmental perspective. Water, 16, 383. https://doi.org/10.3390/w16030383
  • Kaniowski, R., Pastuszko, R. (2018). Comparison of heat transfer coefficients of open micro-channels and plain microfins. EPJ Web of Conferences, 180, 02041. https://doi.org/10.1051/epjconf/201818002041
  • Kaniowski, R., Poniewski, M. (2013). Measurements of Two-Phase Flow Patterns and Local Void Fraction in Vertical Rectangular Minichannel. Archives of Thermodynamics, 34, 3-21. https://doi.org/10.2478/aoter-2013-0007
  • Kotrys-Działak, D., Stokowiec, K. (2023). Temperature Distribution Analysis on the Surface of the Radiator: Infrared Camera and Thermocouples Results Comparison. Rocznik Ochrona Środowiska, 25, 37-44. https://doi.org/10.54740/ros.2023.005
  • Krawczyk, N., Dębska, L., Piotrowski, J. Zb., Honus, S., Majewski, G. (2023). Validation of the Fanger Model and Assessment of SBS Symptoms in the Lecture Room. Rocznik Ochrona Środowiska, 25, 68-76. https://doi.org/10.54740/ros.2023.008
  • Krechowicz, A., Krechowicz, M., Poczeta, K. (2022). Machine learning approaches to predict electricity production from renewable energy sources. Energies, 15, 9146. https://doi.org/10.3390/en15239146
  • Krechowicz, M., Krechowicz, A., Lichołai, L., Pawelec, A., Piotrowski, J.Z., Stępień, A. (2022). Reduction of the risk of inaccurate prediction of electricity generation from PV farms using machine learning. Energies, 15, 4006. https://doi.org/10.3390/en15114006
  • Kruse, C.M., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., Ndao, S. (2015). Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces. Interna-tional Journal Heat and Mass Transfer, 82, 109-116. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023
  • Liu, B., Zhang, Y., Wei, J., Wang W. (2019). Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces. International Journal Heat and Mass Trans-fer, 132, 259-270. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.003
  • Mukherjee, S., Wciślik, S., Mishra, P.C., Chaudhuri, P. (2024). Nanofluids: Critical issues, economics and sustainability perspectives. Particuology, 87, 147-172. https://doi.org/10.1016/j.partic.2023.06.021
  • Orman, Ł.J., Radek, N., Pietraszek, J., Szczepaniak, M. (2020). Analysis of enhanced pool boiling heat transfer on laser-textured surfaces. Energies, 13, 2700. https://doi.org/10.3390/en13112700
  • Pastuszko, R., Kaniowski, R., Dadas, N., Bedla-Pawlusek, M. (2021). Pool boiling enhancement and a method of bubble diameter determination on surfaces with deep minichannels. International Journal of Heat and Mass Transfer, 179, 121713. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121713
  • Pavlenko, A.M., Basok, B.I. (2005). Regularities of boiling-up of emulsified liquids. Heat Transfer Research, 36(5), 419-424. https://doi.org/10.1615/HeatTransRes.v36.i5.90
  • Pavlenkо, A., Szkarowski, A. (2018). Thermal insulation materials with high-porous structure based on the solu-ble glass and technogenic mineral fillers. Rocznik Ochrona Środowiska, 20, 725-740.
  • Pavlenko, A., Szkarowski, A., Janta-Lipińska, S. (2014). Badania spalania emulsji paliwowych. Rocznik Ochrona Środowiska, 16(1), 376-385.
  • Smirnov, G.F. (1977). Približennaja teorija teploobmena pri kipenii na poverchnostjach pokrytych kapilljarno – poristymi strukturami. Teploenergetika, 9, 77-80.
  • Voglar, J., Gregorčič, P., Zupančič, M., Golobič I. (2018). Boiling performance on surfaces with capillary-length-spaced one- and two-dimensional laser-textured patterns. International Journal Heat and Mass Transfer, 127, 1188-1196. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.056
  • Voznyak, O., Spodyniuk, N., Antypov, I., Dudkiewicz, E., Kasynets, M., Savchenko, O., Tarasenko, S. (2023). Efficiency Improvement of Eco-Friendly Solar Heat Supply System as a Building Coating. Sustainability, 15, 2831. https://doi.org/10.3390/su15032831
  • Wojtkowiak, J., Amanowicz Ł., Mróz T. (2019). A new type of cooling ceiling panel with corrugated surface – Experimental investigation. International Journal of Energy Research, 43(13), 7275-7286. https://doi.org/10.1002/er.4753
  • Wojtkowiak, J., Amanowicz, Ł. (2020). Effect of surface corrugation on cooling capacity of ceiling panel, Thermal Science and Engineering Progress, 19, 100572. https://doi.org/10.1016/j.tsep.2020.100572
  • Xin, M.-D., Chao, Y.-D. (1987). Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. Chem. Eng, Comm. 50, 185-199.
  • Zakšek, P., Zupančič, M., Gregorčič, P., Golobič, I. (2020). Investigation of nucleate pool boiling of saturated pure liquids and ethanol-water mixtures on smooth and laser-textured surfaces. Nanoscale and Microscale Thermophysical Engineering, 24, 29-42. https://doi.org/10.1080/15567265.2019.1689590
  • Zupančič, M., Može, M., Gregorčič, P., Golobič, I. (2017). Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer. Applied Surface Science, 399, 480-490. https://doi.org/10.1016/j.apsusc.2016.12.120
  • Zupančič, M.; Može, M.; Gregorčič, P.; Sitar, A, Golobič, I. (2017). Evaluation of enhanced nucleate boiling performance through walltemperature distributions on PDMS-silica coated and non-coated laser textured stain-less steel surfaces. International Journal Heat and Mass Transfer, 111, 419-428. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.128
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d3612e82-1e45-49ec-aac2-7549d0903d1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.