Czasopismo
2023
|
Vol. 71, no. 3
|
1409--1426
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Agricultural development in Colombia has been characterized by being carried out in a local and traditional way, where important basic aspects are not always considered for the best performance of crops. These characteristics are presented in official government documentation distinguished by its heterogeneity. Ontologies in the domain of agriculture allow the organization and structuring of information to represent knowledge in such a way that the homogeneity of agricultural data dispersed in different types of documents such as manuals, weather reports, and official technical sheets is achieved. In accordance with the above, this work presents the development of an ontology in the agricultural domain to facilitate the identification of cultivation areas and improve land use, relating the basic concepts for an effective crop development according to the specifications and recommendations proposed in Colombian government documentation, using the Methontology methodology. This is achieved with the application of descriptive logic that, based on rules, generates inferences to identify the cultivation options and cultivable areas that present the highest performance. The interaction and use of the ontological model and inference rules are done through a web application made with Python and Flask. The precision of the model is evaluated using historical data of crops produced, making a comparison between the real data and the results obtained through the ontological model, obtaining as a result 80% reliability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1409--1426
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
- Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, marizar@correo.udistrital.edu.co
- Fundación Universitaria Internacional de La Rioja, Bogotá, Colombia, andres.restrepo@unir.net
autor
- Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, jbaron@udistrital.edu.co
- Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, pagaonag@udistrital.edu.co
- Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, cemontenegrom@udistrital.edu.co
Bibliografia
- 1. Abadi A, Ben-Azza H, Sekkat S (2018) Improving integrated product design using SWRL rules expression and ontology-based reasoning. Procedia Comput Sci 127:416–425. https://doi.org/10.1016/j.procs.2018.01.139
- 2. Abbes H, Gargouri F (2016) Big data integration: a MongoDB database and modular ontologies based approach. Procedia Comput Sci 96(September):446–455. https://doi.org/10.1016/j.procs.2016.08.099
- 3. Al-Amin ST, Ordonez C (2022) Incremental and accurate computation of machine learning models with smart data summarization. J Intell Inf Syst. https://doi.org/10.1007/s10844-021-00690-5
- 4. Alkhammash E (2020) Formal modelling of OWL ontologies-based requirements for the development of safe and secure smart city systems. Soft Comput 24(15):11095–11108. https://doi.org/10.1007/s00500-020-04688-z
- 5. Alonso S, Sicilia M (2007) Using an AGROVOC-based ontology for the description of learning resources on organic agriculture. Metadata Semant. https://doi.org/10.1007/978-0-387-77745-0_47
- 6. Andréka H, van Benthem J, Németi I (2017) On a new semantics for first-order predicate logic. J Philos Log 46(3):259–267. https://doi.org/10.1007/s10992-017-9429-y
- 7. Andryushkevich SK, Kovalyov SP, Nefedov E (2019) Composition and application of power system digital twins based on ontological modeling. In: IEEE international conference on industrial informatics (INDIN), 2019, pp 1536–1542. https://doi.org/10.1109/INDIN41052.2019.8972267
- 8. Arcila J, Farfán F, Moreno A, Salazar LF, Hincapie E (2007) Sistema de Producción de café en Colombia (Editorial Blanecolor Ltda (ed); 1st ed). FNC-Cenicafé. https://doi.org/10.1017/CBO9781107415324.004
- 9. Arnaud E, Laporte MA, Kim S, Aubert C, Leonelli S, Miro B, Cooper L, Jaiswal P, Kruseman G, Shrestha R, Buttigieg PL, Mungall CJ, Pietragalla J, Agbona A, Muliro J, Detras J, Hualla V, Rathore A, Das RR et al.. (2020). The ontologies community of practice: a CGIAR initiative for big data in agrifood systems. Patterns. https://doi.org/10.1016/j.patter.2020.100105.
- 10. Bonacin R, Nabuco OF, Pierozzi Junior I (2016) Ontology models of the impacts of agriculture and climate changes on water resources: Scenarios on interoperability and information recovery. Futur Gener Comput Syst 54:423–434. https://doi.org/10.1016/j.future.2015.04.010
- 11. Bourhis P, Reutter JL, Vrgoč D (2020) JSON: Data model and query languages. Inf Syst. https://doi.org/10.1016/j.is.2019.101478
- 12. Buoncompagni L, Kareem SY, Mastrogiovanni F (2022) OWLOOP: A modular API to describe OWL axioms in OOP objects hierarchies. SoftwareX 17:100952. https://doi.org/10.1016/j.softx.2021.100952
- 13. Cámara de comercio de Bogotá (2015a) Manual de fresa. https://bibliotecadigital.ccb.org.co/handle/11520/14312
- 14. Cámara de Comercio de Bogotá (2015b) Manual papa, pp 1–54. https://bibliotecadigital.ccb.org.co/handle/11520/14306.
- 15. Carvalho VA, Almeida JPA, Fonseca CM, Guizzardi G (2017) Multi-level ontology-based conceptual modeling. Data Knowl Eng 109:3–24. https://doi.org/10.1016/j.datak.2017.03.002
- 16. Chou CC, Jeng AP, Chu CP, Chang CH, Wang RG (2018) Generation and visualization of earthquake drill scripts for first responders using ontology and serious game platforms. Adv Eng Inform 38(September):538–554. https://doi.org/10.1016/j.aei.2018.09.003
- 17. Corcho O, Fernández-López M, Gómez-Pérez A, López-Cima A (2005) Construcción de ontologías legales con la metodología Methontology y la herramienta WebODE. In: Law and the semantic web. Legal ontologies, methodologies, legal information retrieval, and applications, pp 142–157. Springer. http://oa.upm.es/5289/
- 18. Das Noyon A, Md Abid Y, Maruf Hassan M, Hasan Sharif M, Nawar Deepa F, Islam Rumel R, Haque R, Nasrin S, Zaman M (2018) A study of Ajax template injection in web applications. Int J Eng Technol, 7(3.13): 123. https://doi.org/10.14419/ijet.v7i3.13.16337.
- 19. de Preneuf F (2019) Agricultura y alimentos. Entendiendo a La Pobreza. https://www.bancomundial.org/es/topic/agriculture/overview#1
- 20. Dentler K, Cornet R, Ten Teije A, De Keizer N (2011) Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic Web 2(2):71–87. https://doi.org/10.3233/SW-2011-0034
- 21. Díaz Piraquive FN, Joyanes Aguilar L, Medina García VH (2009) Taxonomía, ontología y folksonomía, ¿qué son y qué beneficios u oportunidades presentan para los usuarios de la web? Universidad & Empresa, 8(16), 242–261. https://www.redalyc.org/articulo.oa?id=187214803010.
- 22. Divya P, Varma M, RatnaMouli U, Srinivas, Garima, Nikhil, and Vishistha (2021) Web based optical character recognition application using flask and tesseract. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.850.
- 23. El Ghosh M, Naja H, Abdulrab H, Khalil M (2017) Towards a legal rule-based system grounded on the integration of criminal domain ontology and rules. Procedia Comput Sci 112:632–642. https://doi.org/10.1016/j.procs.2017.08.109
- 24. Fedecacao FNDC (2013) Guía ambiental para el cultivo del cacao
- 25. Fernández M, Gómez-Pérez A, Juristo N (1997) Methontology: from ontological art towards ontological engineering. AAAI-97 spring symposium series. https://doi.org/10.1109/AXMEDIS.2007.19
- 26. Fox MS, Barbuceanu M, Gruninger M (1996) An organisation ontology for enterprise modeling: preliminary concepts for linking structure and behaviour. Comput Ind 29(1-2 SPEC. ISS.):123–134. https://doi.org/10.1016/0166-3615(95)00079-8
- 27. Ginige A, Walisadeera AI, Ginige T, De Silva L, Di Giovanni P, Mathai M, Goonetillake J, Wikramanayake G, Vitiello G, Sebillo M, Tortora G, Richards D, Jain R (2016) Digital knowledge ecosystem for achieving sustainable agriculture production: a case study from Sri Lanka. In: Proceedings - 3rd IEEE international conference on data science and advanced analytics, DSAA 2016, pp 602–611. https://doi.org/10.1109/DSAA.2016.82
- 28. Gobernación de Antioquia (2014) Manual Técnico del Cultivo de Fresa Bajo Buenas Prácticas Agricolas. 978-958-8711-51-5
- 29. Gobernación de Antioquia (2015) Manual Técnico del Cultivo de Maíz Bajo Buenas Prácticas Agrícolas
- 30. Gobernación de Antioquia (2017) Manual Técnico del Cultivo de Papa bajo buenas practicas agricolas. Gobernacion de Antioquia, Secretaria de Agricultura y Desarrollo Rural, 122. https://conectarural.org/sitio/sites/default/files/documentos/MANUALPAPA_0.pdf
- 31. Grahl M, Spring A, Andreeva T, Bluhm T, Bozhenkov S, Dumke S, Geiger J, Grulke O, Grün M, Holtz A, Höfel U, Laqua H, Lewerentz M, Riemann H, Schilling J, von Stechow A, Svensson J, Winter A (2020) W7-X logbook REST API for processing experimental metadata and data enrichment at the Wendelstein 7-X stellarator. Fusion Eng Des 160(June):111819. https://doi.org/10.1016/j.fusengdes.2020.111819
- 32. Gruber TR (1995) Principles for the design of Ontology. 43, 907–928.
- 33. Gulyaeva KA, Artemieva IL (2019) Applied logics to develop ontology model of the complex-structured domains: organic chemistry and biochemistry. The World Thematic Conf Biomed Eng Comput Intell. https://doi.org/10.1007/978-3-030-21726-6_7
- 34. IDEAM - Instituto de Hidrología MEA (2018) Tiempo y Clima. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/71473013
- 35. Ingram J, Gaskell P (2019) Searching for meaning: co-constructing ontologies with stakeholders for smarter search engines in agriculture. NJAS - Wageningen J Life Sci 90–91:100300. https://doi.org/10.1016/j.njas.2019.04.006
- 36. Instituto DE Hidrología M, Ideam YEA. (2014). Atlas climatológico de Colombia. http://atlas.ideam.gov.co/basefiles/BrilloSolar_Anual.pdf.
- 37. Jankovic M, Yüksel M, Babr MM, Letizia F, Braun V (2020) Space debris ontology for ADR capture methods selection. Acta Astronaut 173(February):56–68. https://doi.org/10.1016/j.actaastro.2020.03.047
- 38. Joo S, Koide S, Takeda H, Horyu D, Takezaki A, Yoshida T (2016) Designing of ontology for domain vocabulary on agriculture activity ontology (AAO) and a lesson learned. Lecture notes in computer science, 10055 LNCS, pp 32–46. https://doi.org/10.1007/978-3-319-50112-3_3
- 39. Kang YB, Krishnaswamy S, Sawangphol W, Gao L, Li YF (2019) Understanding and improving ontology reasoning efficiency through learning and ranking. Inf Syst 87:101412. https://doi.org/10.1016/j.is.2019.07.002
- 40. Kaushik N, Chatterjee N (2018) Automatic relationship extraction from agricultural text for ontology construction. Inf Process Agric 5(1):60–73. https://doi.org/10.1016/j.inpa.2017.11.003
- 41. Lacasta J, Lopez-Pellicer FJ, Espejo-García B, Nogueras-Iso J, Zarazaga-Soria FJ (2018) Agricultural recommendation system for crop protection. Comput Electron Agric 152(8):82–89. https://doi.org/10.1016/j.compag.2018.06.049
- 42. Lagos-Ortiz K, del Pilar Salas-Zárate M, Paredes-Valverde MA, García-Díaz JA, Valencia-García R (2020) Agrient: a knowledge-based web platform for managing insect pests of field crops. Appl Sci (switzerland). https://doi.org/10.3390/app10031040
- 43. Lamy J-B (2020) Chapter 1. In: Owlready2 documentation release 0.23.
- 44. Lohmann S, Link V, Marbach E, Negru S (2015) WebVOWL: web-based visualization of ontologies BT - knowledge engineering and knowledge management. In: Lambrix P, Hyvönen E, Blomqvist E, Presutti V, Qi G, Sattler U, Ding Y, Ghidini C (eds.). Springer International Publishing, pp. 154–158
- 45. Maussa A (2018) Colombia pierde cerca del 40 % de los alimentos que produce. El Espectador. https://www.elespectador.com/noticias/medio-ambiente/colombia-pierde-cerca-del-40-de-los-alimentos-que-produce-articulo-827495
- 46. Ministerio de Agricultura y Desarrollo Rural (2018). ¿Cuáles cultivos tienen mayor potencial en Colombia? Agronet. https://www.agronet.gov.co/Noticias/Paginas/¿Cuáles-cultivos-tienen-mayor-potencial-en-Colombia.aspx.
- 47. Mun D, Ramani K (2011) Knowledge-based part similarity measurement utilizing ontology and multi-criteria decision making technique. Adv Eng Inf 25(2):119–130. https://doi.org/10.1016/j.aei.2010.07.003
- 48. Ngo QH, Le-Khac NA, Kechadi T (2018) Ontology based approach for precision agriculture. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics): Vol. 11248 LNAI. Springer. https://doi.org/10.1007/978-3-030-03014-8_15.
- 49. Nguyen Q-D, Roussey C, Poveda-Villalón M, de Vaulx C, Chanet J-P (2020) Development experience of a context-aware system for smart irrigation using CASO and IRRIG ontologies. Appl Sci. https://doi.org/10.3390/app10051803
- 50. O’Connor M (2009a) The semantic web rule language. In: Protégé. https://protege.stanford.edu/conference2009a/slides/SWRL2009aProtegeConference.pdf
- 51. O’Connor, M. (2009b). The semantic web rule language. In: Protégé conference. https://protege.stanford.edu/conference/2009b/slides/SWRL2009bProtegeConference.pdf
- 52. Oliva-Felipe L, Gómez-Sebastià I, Verdaguer M, Sànchez-Marrè M, Poch M, Cortés U (2017) Reasoning about river basins: WaWO+ revisited. Environ Model Softw 89:106–119. https://doi.org/10.1016/j.envsoft.2016.11.009
- 53. Pan JZ, Staab S, Aßmann U, Ebert J, Zhao Y (2013) Ontology-driven software development. Springer, Berlin
- 54. Pinilla-García GA, Barón-Velandia J (2015) Obtención de inferencias en documentos de pasantía descritos a nivel ontológico. Respuestas, 20(2):119. https://doi.org/10.22463/0122820x.379
- 55. Pokharel S, Sherif MA and Lehmann J.(2014) Ontology based data access and integration for improving the effectiveness of farming in Nepal. In: Proceedings - 2014 IEEE/WIC/ACM international joint conference on web intelligence and intelligent agent technology - workshops, WI-IAT 2014, 2, 319–326. https://doi.org/10.1109/WI-IAT.2014.114
- 56. Poveda-Villalón M, Fernández-Izquierdo A, Fernández-López M, García-Castro R (2022) LOT: an industrial oriented ontology engineering framework. Eng Appl Artif Intell 111:104755. https://doi.org/10.1016/j.engappai.2022.104755
- 57. Ramar K, Mirnalinee TT (2014) A semantic web for weather forecasting systems. In: 2014 international conference on recent trends in information technology, ICRTIT 2014, 1–6. https://doi.org/10.1109/ICRTIT.2014.6996127
- 58. Sánchez-Alonso S, Tello J, Holm A, Lieblein G, Breland T, Mills R, Manouselis N (2008) Engineering an ontology on organic agriculture and agroecology: the case of the Organic.Edunet project
- 59. Shishehchi S, Banihashem SY (2021) A rule based expert system based on ontology for diagnosis of ITP disease. Smart Health 21(May):100192. https://doi.org/10.1016/j.smhl.2021.100192
- 60. SIAC (2012) Sistema de Información Ambiental de Colombia. Siac. Gov.Co. http://www.siac.gov.co/sueloscolombia.
- 61. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web Semant 5(2):51–53. https://doi.org/10.1016/j.websem.2007.03.004
- 62. Tang X, Xiao M, Hu B, Pan D (2018) Exchanging knowledge for test-based diagnosis using OWL ontologies and SWRL rules. Procedia Comput Sci 131:847–854. https://doi.org/10.1016/j.procs.2018.04.279
- 63. Tchakounté F, Molengar D, Ngossaha JM (2020) A description logic ontology for email phishing. Int J Inf Secur Sci 9(1):44–63
- 64. Verdonck M, Gailly F, Pergl R, Guizzardi G, Martins B, Pastor O (2019) Comparing traditional conceptual modeling with ontology-driven conceptual modeling: an empirical study. Inf Syst 81:92–103. https://doi.org/10.1016/j.is.2018.11.009
- 65. Vilma R (2014) Desarrollo de Ontologías para papas mejoradas. Asociacion Latinoamericana De La Papa 1:187
- 66. Walisadeera AI, Ginige A, Wikramanayake GN (2015) User centered ontology for Sri Lankan farmers. Eco Inform 26(P2):140–150. https://doi.org/10.1016/j.ecoinf.2014.07.008
- 67. Wang Y, Wang Y (2018) Citrus ontology development based on the eight-point charter of agriculture. Comput Electron Agric 155(September 2017):359–370. https://doi.org/10.1016/j.compag.2018.10.034
- 68. World Wide Web Consortium (2004) OWL Web Ontology Language. Overview. https://www.w3.org/TR/owl-features/.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d3596886-f0fd-4408-ae2f-014d87c59839