Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 3 | 1361--1371
Tytuł artykułu

The high-impact sea-effect snowstorm of February 2020 over the southern Black Sea

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The early February 2020 wintry weather set in across the southern Black Sea and northern coastal region of Turkey. During the high-impact snowstorm event, northerly winds carried cold arctic air across the relatively warmer Black Sea, which caused intense sea-effect snow showers. The omega-block pattern was present on successive days. Atmospheric blocking analysis was conducted with an objective two-dimensional index. Blocking analysis indicated that it was related to quasi-stationary the north-eastern Atlantic ridge, which was the most favourable position for leading to cold spells over the Black Sea, because it enabled a prominent downstream trough there. Key factors conducive to sea-effect snowfall over the southern Black Sea were noted highlight for this weather phenomenon: (i) an upper-tropospheric trough—which carried warm and moist air masses from the Black Sea towards the lands; (ii) a prolonged ridge in the upper troposphere—which was associated with a blocking anticyclone at the surface; (iii) directional wind shear was less than 60° at the boundary layer; (iv) low-level winds were approximately 10–15 ms−1 and suitable wind direction; (v) temperature differences between the sea surface and the 850-hPa level were higher than critical limit of 13 °C; (vi) the ratio between the average low-level wind and the fetch was 0.033, which was good enough for cloud formation. Main findings indicated that the dynamical factors and meso-scale ingredients triggering and maintaining this sea-effect snowstorm were satisfactory, and they were essential to pinpoint the underlying factors of high-impact sea-effect snowfall.
Wydawca

Czasopismo
Rocznik
Strony
1361--1371
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Ballesteros JAA, Hitchens NM (2018) Meteorological factors affecting airport operations during the winter season in the midwest. Weather Climate Soc. https://doi.org/10.1175/WCAS-D-17-0054.1
  • 2. Baltaci H, da Silva MCL, Gomes HB (2020) Climatological conditions of the Black Sea-effect snowfall events in Istanbul, Turkey. Int J Climatol 41:1–12
  • 3. Brunner L, Hegerl GC, Steiner AK (2017) Connecting atmospheric blocking to European temperature extremes in Spring. J Clim 30:585–594
  • 4. Buehler T, Raible CC, Stocker TF (2011) The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63:212–222
  • 5. Davini P, Cagnazzo C, Gualdi S, Navarra A (2012) Bidimensional diagnostics variability and trends of Northern hemisphere blocking. J Clim 25(19):6496–6509
  • 6. Davini P, Weisheimer A, Balmaseda M et al (2021) The representation of winter Northern Hemisphere atmospheric blocking in the ECMWF seasonal prediction systems. Q J R Meteorol Soc 147:1344–1363
  • 7. Demirtaş M (2017a) The large scale environment of the European 2012 high-impact cold wave: prolonged upstream and downstream atmospheric blocking. Weather 72(10):297–301. https://doi.org/10.1002/wea.3020
  • 8. Demirtaş M (2017b) High impact heat waves over the euro-mediterranean region and Turkey in concert with atmospheric blocking and large dynamical and physical anomalies. Anadolu Univ J Sci Technol A App Sci and Eng 18(1):97–114. https://doi.org/10.18038/aubtda.300426
  • 9. Demirtaş M (2018) The high-impact 2007 hot summer over Turkey: atmospheric-blocking and heat-wave episodes. Meteorol Appl 25(3):406–413. https://doi.org/10.1002/met.1708
  • 10. Demirtaş M (2022a) A lake-effect snowstorm over southern Europe with upstream blocking in early January 2017. Weather. https://doi.org/10.1002/wea.4192
  • 11. Demirtaş M (2022b) The anomalously cold January 2017 in the south-eastern Europe in a warming climate. Int. Journal of Climatology, 1–9. https://doi.org/10.1002/joc.7574
  • 12. Faranda, (2020) An attempt to explain recent changes in European snowfall extremes. Weather Clim Dyn 1:445–458
  • 13. Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
  • 14. Kindap T (2010) A severe sea-effect snow episode over the city of Istanbul. Nat Hazards 54:707–723
  • 15. Laird NF, Kristovich DAR, Walsh JE (2003) Idealized model simulations examining the mesoscale structure of winter lake-effect circulations. Mon Wea Rev 131:206–221
  • 16. Markowski P, Richardson Y (2010) The Boundary Layer. Mesoscale Meteorology in Midlatitudes. John Wiley & Sons Ltd Chichester, UK, pp 93–102. https://doi.org/10.1002/9780470682104.ch4
  • 17. Niziol TA (1987) Operational forecasting of lake-effect snowfall in western and central New York. Wea Forecast 2:310–321
  • 18. Norris J, Vaughan G, Schultz D (2013) Snow-bands over the English Channel and Irish Sea during cold-air outbreaks. Q J R Meteorol Soc 139:1747–1761
  • 19. Olsson T, Post P, Rannat K, Keernik H, Perttula T, Luomaranta A, Voormansik T (2018) Sea-effect snowfall case in the baltic sea region analysed by reanalysis: remote sensing data and convection-permitting mesoscale modelling. Geophysica 53(1):65–91
  • 20. Pfahl S (2014) Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat Hazards Earth Syst Sci 14:1461–1475
  • 21. Pfahl S, Wernli H (2012) Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on sub daily time scales. Geophys Res Lett. https://doi.org/10.1029/2012GL052261
  • 22. Savijärvi H (2015) Cold air outbreaks along a non-frozen sea channel: effects of wind on snow bands. Meteorol Atmos Phys 127:383–391. https://doi.org/10.1007/s00703-015-0370-8
  • 23. Schaller et al (2018) Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environ Res Lett 13:054015. https://doi.org/10.1088/1748-9326/aaba55
  • 24. Scherrer SC, Croci-Maspoli M, Schwierz C, Appenzeller C (2006) Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic Region. Int J Climatol 26:233–250
  • 25. Sillmann J, Croci-Maspoli M, Kallache M et al (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24:5899–5913
  • 26. Sousounis PJ (2003) Lake-Effect Storms, Editor(s): James R. Holton, Encyclopedia of atmospheric sciences. Academic Press, NY, US, pp 1104–1115 https://doi.org/10.1016/B0-12-227090-8/00195-0
  • 27. The NCAR Command Language (Version 6.6.2) [Software] (2019) Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5
  • 28. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus A 42:343–365
  • 29. Wikipedia (2021) Black Sea. https://en.wikipedia.org/wiki/Black_Sea (Accessed: 28.07.2021)
  • 30. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J Atmos Sci 65:609–626
  • 31. Yavuz V, Lupo AR, Fox NI, Deniz A (2022) Statistical characteristics of sea-effect snow events over the western Black Sea. Theor Appl Climatol 150:955–968. https://doi.org/10.1007/s00704-022-04213-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d3547b24-65c6-44e7-ac7a-4ea050b71ca8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.