Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 2 | 943--962
Tytuł artykułu

An investigation into the role of synoptic conditions on Central African precipitation variability

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synoptic precipitation variability over Central Africa (CA) in the March-to-May (MAM) and September-to-November (SON) seasons is investigated in this study. The composite analysis is used to highlight the evolution of synoptic precipitation, related convection, and dynamic fields. Composite analysis findings show that synoptic precipitation anomalies increase/ fade with an increase/decrease in convection, with the largest amplitude over 5° S–10° N and 2.5–20° E in MAM and 5° N–7.5° N and 5–15° E in SON. Precipitation anomalies and convection associated with the synoptic variability progress eastward preceded (followed) by eastward (westward) low-level wind. This synoptic sequence is associated with a downward motion and an inflow, indicating the storm’s presence, which contributes significantly to precipitation initiation over CA. The empirical orthogonal function for precipitation during the SON season is lower than that observed during the MAM season in the context of the size and spatial pattern. During these precipitation occurrences, the zonal moisture component contributes the most to the moisture initiation over the region. The findings of this study show that the observed convergence/ divergence position remains unchanged in intensity irrespective of the positive/negative precipitation events. Overall, the synoptic-scale conditions in MAM contribute around 58% of the total variability in precipitation.
Wydawca

Czasopismo
Rocznik
Strony
943--962
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
  • Department of Physics Faculty of Science, University of Yaounde I, P.O. BOX 812, Yaounde, Cameroon, zebaze.s@gmail.com
autor
  • Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
  • Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
  • Department of Physics Faculty of Science, University of Yaounde I, P.O. BOX 812, Yaounde, Cameroon
  • Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
  • Earth System Physics Section, Abdus Salam ICTP, Trieste, Italy
  • Department of Physics Faculty of Science, University of Yaounde I, P.O. BOX 812, Yaounde, Cameroon
  • Higher Teacher Training College, University of Yaounde I, Yaounde, Cameroon
  • Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
  • Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
  • Department of Physics Faculty of Science, University of Yaounde I, P.O. BOX 812, Yaounde, Cameroon
  • Department of Physics, Faculty of Science, University of Douala, Douala, Cameroon
  • Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
Bibliografia
  • 1. Arkin PA, Ardanuy PE (1989) Estimating climatic-scale precipitation from space: a review. J Clim 2(11):1229–1238
  • 2. Ayesiga G, Holloway CE, Williams CJ, Yang G-Y, Ferrett S (2020) The observed synoptic-scale precipitation relationship between Western Equatorial Africa and Eastern Equatorial Africa. Int J Climatol. https://doi.org/10.1002/joc.6711
  • 3. Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol J Royal Meteorol Soc 27(10):1335–1349
  • 4. Bowman KP, Collier JC, North GR, Wu Q, Ha E, Hardin J (2005) Diurnal cycle of tropical precipitation in tropical rainfall measuring mission (TRMM) satellite and ocean buoy rain gauge data. J Geophys Res 110:D21104. https://doi.org/10.1029/2005JD005763
  • 5. Chao BF, Naito I (1995) Wavelet analysis provides a new tool for studying Earth’s rotation. EOS Trans Am Geophys Union 76(16):161–165
  • 6. Christian HJ (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Amer Geophys Res 108:4005
  • 7. Daubechies I (2009) The wavelet transform, time-frequency localization and signal analysis. Princeton, Princeton University Press, pp 442–486
  • 8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597
  • 9. Dezfuli AK, Nicholson SE (2013) The relationship of interannual variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II. The boreal autumn. J Clim 26:66–84
  • 10. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteor 18:1016–1022
  • 11. Farnsworth A, White E, Williams CJ, Black E, Kniveton DR (2011) Understanding the large scale driving mechanisms of rainfall variability over Central Africa. In African climate and climate change. Springer, Dordrecht, pp 101–122
  • 12. Grueber A, Krueger AF (1974) The status of the NOAA outgoing longwave radiation data set. Bull Am Meteorol Soc 65:958–962
  • 13. Huffman GH, Adler RF, Arkin P et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Amer Meteor Soc 78:5–20
  • 14. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J HyDrometeorol 2:36–50
  • 15. IPCC (2021) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press In Press, Cambridge
  • 16. Jackson B, Nicholson SE, Klotter D (2009) Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon Weather Rev 137:1272–1294
  • 17. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2
  • 18. Kamsu Tamo PH, Janicot S, Monkam D, Lenouo A (2014) Convection activity over the Guinean coast and Central Africa during northern spring from synoptic to intra-seasonal timescales. Clim Dyn. https://doi.org/10.1007/s00382-014-2111-y
  • 19. Kelly SE (1996) Gibbs phenomenon for wavelets. Appl Comput Harmon Anal 3(1):72–81
  • 20. Kishore P, Jayalakshmi J, Lin PL, Velicogna I, Sutterley TC, Ciracì E, Kumar SB (2017) Investigation of Kelvin wave periods during Hai-Tang typhoon using empirical mode decomposition. J Atmos Solar Terr Phys 164:192–202
  • 21. Laing AG, Carbone RE, Levizzani V (2011) Cycles and propagation of deep convection over equatorial Africa. Mon Weather Rev 139(9):2832–2853
  • 22. Lanczos C (1956) Applied analysis. Prentice-Hall, New York, p 539
  • 23. Lee DT, Yamamoto A (1994) Wavelet analysis: theory and applications. Hewlett Pack J 45:44–44
  • 24. Lélé IM, Lance ML, Lamb PJ (2015) Analysis of low-level atmospheric moisture transport associated with the West African Monsoon. J Climate 28:4414–4430. https://doi.org/10.1175/JCLI-D-14-00746.1
  • 25. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Amer Meteor Soc 77:1275–1277
  • 26. Liebmann B, Blade I, Funk C et al (2017) Climatology and interannual variability of boreal spring wet season precipitation in the Eastern Horn of Africa and implications for its recent decline. J Clim 10:3867–3886
  • 27. Liu C, Zipser EJ, Nesbitt SW (2007) Global distribution of tropical deep convection: different perspectives from TRMM infrared and radar data. J Climate 20:489–503
  • 28. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Science Report No.1, Statistical forecasting project; Massachusetts Institute of Technology, Department of Meteorology, Cambridge, MA
  • 29. Lubis SW, Jacobi C (2015) The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. Int J Climatol 35(7):1465–1483
  • 30. Matsuyama H, Oki T, Shinoda M, Masuda K (1994) The seasonal change of the water budget in the Congo River Basin. J Meteor Soc Jpn 32:281–299
  • 31. Mekonnen A, Thorncroft CD (2016) On mechanisms that determine synoptic time scale convection over East Africa. Int J Climatol 36:4045–4057
  • 32. Mekonnen A, Thorncroft CD, Anantha RA, Kiladis GN (2008) Convectively coupled Kelvin waves over Tropical Africa during the boreal summer: structure and variability. J Clim 21(24):6649–6667
  • 33. Monahan AH, Fyfe JC, Ambaum MHP, Stephenson DB, North GR (2009) Empirical orthogonal functions: the medium is the message. J Climate 22:6501–6514. https://doi.org/10.1175/2009JCLI3062.1
  • 34. Mounier F, Kiladis G, Janicot S (2007) analysis of the dominant mode of convectively coupled Kelvin waves in west Africa monsoon. J Climate 20:1487
  • 35. Nguyen TTH, Duvel JP (2008) Synoptic wave perturbations and convective systems over equatorial Africa. J Climate 21:6372–6388
  • 36. Nicholson SE (2001) Climatic and environmental change in Africa during the last two centuries. Climate Res 17(2):123–144
  • 37. Nicholson SE, Dezfuli AK (2013) The relationship of rainfall variability in Western Equatorial Africa to the tropical oceans and atmospheric circulation. PartI: the boreal spring. J of Climate 26:45–65
  • 38. Pavan V, Tibaldi S, Branković Č (2000) Seasonal prediction of blocking frequency: results from winter ensemble experiments. Q J R Meteorol Soc 126:2125–2142
  • 39. Pokam MW, Djiotang TLA, Mkankam KF (2011) Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data. Clim Dyn 38:1715–1729
  • 40. Pokam WM, Bain CL, Graham RS, Sonwa DJ, Kamga FM (2014) Identification of processes driving low-level westerlies in west equatorial Africa. J Clim 27:4245–4262
  • 41. Qiu S, Zhou W (2019) Variation in summer rainfall over the Yangtze River region during warming and hiatus periods. Atmosphere 10(4):173
  • 42. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306
  • 43. Rao VB, Chapa SR, Franchito SH (1999) Decadal variation of atmosphere-ocean interaction in the tropical Atlantic and its relationship to the Northeast-Brazil rainfall. J Meteorol Soc Jpn 77:63–75
  • 44. Sandjon AT, Tchinda CW, Vondou DA, Nzeukou A, Mba WP (2020) Interannual variations in the amplitude of 25–70-day intraseasonal oscillations in Central Africa and relationship with ENSO. Bull Atmos Sci Technol 1(3):387–405
  • 45. Sinclaire Z, Lenouo A, Tchawoua C, Janicot S (2015) Synoptic Kelvin type perturbation waves over Congo basin over the period 1979–2010. J Atmos Solar Terr Phys 130:43–56
  • 46. Straub KH, Kiladis GN (2002) Observations of convectively coupled Kelvin waves in the eastern Pacific ITCZ. J Atmos Sci 59:30–53
  • 47. Straub KH, Kiladis GN (2003a) Extratropical forcing of convectively coupled Kelvin waves during austral winter. J Atmos Sci 60:526–543
  • 48. Straub KH, Kiladis GN (2003b) The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J Atmos Sci 60:1655–1668
  • 49. Takayabu YN (2006) Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys Res Lett 33:L18705. https://doi.org/10.1029/2006GL027531
  • 50. Takayabu YN, Murakami M (1991) The structure of super cloud clusters bserved on 1–20 June 1986 and their relationship to easterly waves. J Meteor Soc Japan 69:105–125
  • 51. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300
  • 52. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Met Soc 79:61–78
  • 53. Ventrice MJ, Thorncroft CD (2013) The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon Weather Rev 141(6):1910–1924
  • 54. Ventrice MJ, Thorncroft CD, Janiga MA (2012a) Atlantic tropical cyclogenesis: a three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon Weather Rev 140:1108–1124
  • 55. Ventrice MJ, Thorncroft CD, Schreck CJIII (2012b) Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon Weather Rev 140:2198–2214
  • 56. Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo Basin rainfall climatology: can we believe the climate models? Phil Trans R Soc B 368:20120296. https://doi.org/10.1098/rstb.2012.0296
  • 57. Werth D, Avissar R (2005) The local and global effects of African deforestation. Geophys res lett, 32(12)
  • 58. Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399
  • 59. Wilks D (2011) Statistical methods in the atmospheric sciences, vol 100, 3rd edn. International Geophysics, New York, p 704
  • 60. Zebaze S, Lenouo A, Tchawoua C, Gaye AT, Kamga FM (2017) Interaction between moisture transport and Kelvin waves events over Equatorial Africa through ERA-interim. Atmos Sci Lett 18(7):300–306
  • 61. Zhengyu L, Notaro M, Kutzbach J (2006) Assessing global vegetation–climate feedbacks from observations. J Clim 19:787–814
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d3185b23-f9f9-441f-91ee-63e4a95e92e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.