Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 35, nr 1 | 6--12
Tytuł artykułu

Przewodnictwo cieplne powłokowych barier cieplnych na bazie cyrkonianów ziem rzadkich

Autorzy
Warianty tytułu
EN
Thermal conductivity of thermal barrier coatings based on rare earth zirconates
Języki publikacji
PL
Abstrakty
PL
W artykule dokonano charakterystyki podstawowych właściwości cieplnych powłokowych barier cieplnych na bazie cyrkonianów ziem rzadkich typu Gd2Zr2O7, Nd2Zr2O7, La2Zr2O7 i Sm2Zr2O7 otrzymanych metodą natrysku plazmowego APS. Wykonano badania dyfuzyjności cieplnej metodą laser- flash w zakresie temperatury 25÷1100°C przy ciągłej zmianie temperatury oraz w temperaturze 1100°C przez 10 godzin wygrzewania. Pomiar wykonano na stopie AMS5599, stopie AMS5599 z warstwą NiCrAlY oraz w układzie trójwarstwowym (stop AMS5599 + warstwa NiCrAlY + warstwa ceramiczna RE2Zr2O7). Stosując oprogramowanie Proteus firmy Netzsch oraz wyniki dla układu jednowarstwowego, za pomocą modelu dwuwarstwowego wyznaczono dyfuzyjność cieplną samej warstwy NiCrAlY. Następnie wyznaczono dyfuzyjność cieplną warstwy ceramicznej. Uzyskane wyniki wskazują na mniejszą wartość dyfuzyjności cieplnej i przewodnictwa cieplnego badanych warstw. Stwierdzono ponadto, iż wyniki te są inne niż rezultaty uzyskane dla proszków, co jest związane z wpływem mikrostruktury (porowatości i pęknięcia).
EN
The paper presents the investigation results of the basic thermal properties of thermal barrier coatings based on rare earth zirconates such as Gd2Zr2O7, Nd2Zr2O7, La2Zr2O7 and Sm2Zr2O7 deposited by the air plasma spray (APS) method. Thermal diffusivity measurements using the laser-flash method were performed n the range of 25÷1100°C at a continuously changing temperature and annealing at 1100°C for 10 hours. The measurements were performed on AMS 5599 alloy, AMS 5599 alloy with an NiCrAlY interlayer and AMS 5599 alloy + NiCrAlY interlayer + ceramic layer of RE2Zr2O7 samples. By using NETZSCH Proteus software and the results for the single-layer sample, the thermal diffusivity of the interlayer itself was determined by means of the double-layer model. A similar method was used to determine the thermal diffusivity of the ceramic layer. The obtained results indicate a lower thermal diffusivity and thermal conductivity of the new type of coatings in comparison with standard zirconia based TBCs. Those results are slightly different compared with the results obtained for the initial powders, which indicates the crucial role of the ceramic layer microstructure (crack architecture and porosity).
Słowa kluczowe
Wydawca

Rocznik
Strony
6--12
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
Bibliografia
  • [1] Golosnoy I. O., Cipitria A., Clyne T. W.: Heat transfer through plasma- sprayed thermal barrier coatings in gas turbines: A review of recent work. Journal of Thermal Spray Technology 18 (2009) 809÷821.
  • [2] Zhu D. M., Miller R. A: Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. Journal of Thermal Spray Technology 9 (2000) 175÷180.
  • [3] Renteria A. F., Saruhan B.: Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings. Journal of European Ceramic Society 26 (2006) 2249÷2255.
  • [4] Rahaman M. N., Gross J. R., Dutton R. E., Wang H.: Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO 2 –Gd 2 O 3 compositions for potential thermal barrier coating applications. Acta Materiallia 54 (2006) 1615÷1621.
  • [5] McPherson R.: A model for the thermal conductivity of plasma-sprayed ceramic coatings. Thin Solid Films 112 (1984) 89÷95.
  • [6] Siegel R., Howell J. R.: Thermal radiation heat transfer. McGraw-Hill, New York (1972).
  • [7] Berman R.: Thermal conduction in solids. Clarendon, Oxford (1976).
  • [8] Klemens P. G., Williams R. K.: Thermal conductivity of metals and alloys. International Materials Review 31 (1986) 197÷215.
  • [9] Loeb L. B.: The kinetic theory of gases. McGraw-Hill, New York (1934).
  • [10] Ahmaniemi S. et al.: Modified thick thermal barrier coatings: Thermo-physical characterization. Journal of European Ceramic Society 24 (2004) 2669÷2679.
  • [11] Guo H., Murakami H., Kuroda S.: Thermal cycling behaviour of plasma sprayed segmented thermal barrier coatings. Materials Transaction 4 (2006) 306÷309.
  • [12] Vassen R., Tietz F., Kerkhoff G., Stoever D.: New materials for advanced thermal barrier coatings. Lecomte-Beckers J., Schuber F., Ennis P. J., (ed.) Proceedings of the 6 th Liége Conference on Materials for Advanced Power Engineering, Universite de Liége, Belgium, November (1998) 1627÷1635.
  • [13] Lackey W. J., Stinton D. P., Cerny G. A., Schaffhauser A. C., Fehrenbacher L. L.: Ceramic coatings for advanced heat engines – a review and projection. Advances in Ceramic Materials 2 (1987) 24÷30.
  • [14] Vassen R., Stoever D.: Conventional and new materials for thermal barrier coatings. [In:] Functional grandient materials and surface layers prepared by fine particles technology, ed. M.-I. Baraton, I. Uvarova. Kluwer Academic Publishers, Netherlands (2003) 199÷216.
  • [15] Yokokawa H., Sakai N., Kawada T., Dokiya M.: Phase diagram calculations for ZrO 2 based ceramics: thermodynamic regularities in zirconate formation and solubilities of transition metal oxides. [In:] Badwal SPS, Bannister M. J., Hannink R. H. J., editors. Science and technology of zirconia V. Technomic Publishing (1990) 59÷68.
  • [16] Leckie R. M., Krämer S., Rühle M., Levi C. G.: Thermochemical compatibility between alumina and ZrO 2-GdO3/2 thermal barrier coatings. Acta Materialia 53 (2005) 3281÷3292.
  • [17] Schulz U et al.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerospace Science and Technology 7 (2003) 73÷80.
  • [18] Maloney M. J.: Thermal barrier coating systems and materials. US Patent, 6,117,560 (2000).
  • [19] Maloney M. J.: Thermal barrier coating systems and materials. European Patent Application, EP 0 992 603 A1 (2000).
  • [20] Vassen R. et al.: Zirconates as new materials for thermal barrier coatings. Journal of American Ceramic Society 83 (2000) 2023÷2028.
  • [21] Wu J. et al.: Low-thermal-conductivity rare-earth zirconates for potential thermal barrier coating applications. American Ceramic Society 85 (2002) 3031÷3035.
  • [22] Maloney M. J.: Thermal barrier coating systems and materials. US Patent Application, 20030049470 A1 (2003).
  • [23] Klemens P. G.: The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. London A68 (1955) 1113÷1128.
  • [24] Suresh G., Seenivasan G., Krishnaiah M. V., Murti P. S.: Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum. Journal of Nuclear Materials 249 (1997) 259÷261.
  • [25] Suresh G. et al.: Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium. Journal of Alloys and Compounds 269 (1998) L9÷L12.
  • [26] Maloney M. J.: Thermal barrier coating systems and materials. US Patent, 6,177,200 (2001).
  • [27] Lehmann H. et al.: Thermal conductivity and thermal expansion coefficient of the lanthanum rare-earth element zirconate system. Journal of American Ceramic Society 86 (2003) 1338÷1344.
  • [28] Wu J. et al.: Thermal conductivity of ceramics in the ZrO2-GdO1:5 system. Journal of Materials Research 17 (2002) 3193÷3200.
  • [29] Fevre M.: Etudes microstructurales d’oxydes desordonnes et modelisatioin de leurs proprietes thermiques. Doctoral Disseration in Science. Universite de Parix XI Orsay (2003).
  • [30] Vassen R. et al.: Heat-insulating layer based on La2Zr2O7 for high temperatures. International Patent Application, WO 02081768 A2 (2002).
  • [31] Moskal G.: Charakterystyka wybranych właściwości cieplnych proszków ceramicznych typu RE2Zr2O7. Inżynieria Materiałowa 31 (2010) 1107÷1112.
  • [32] Kittle C.: Introduction to solid state physics. Wiley, New York (1996).
  • [33] Abeles B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review 131 (1963) 1906÷1911.
  • [34] Slack G. A.: Effect of isotopes on low-temperature thermal conductivity. Physical Review 105 (1957) 829÷831.
  • [35] Yang J., Meisner G. P., Chen L.: Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters 85 (2004) 1140÷1142.
  • [36] Wan C. L.: Effect of point defects on the thermal transport properties of LaxGd1−x…2Zr2O7: Experiment and theoretical model. Physical Review B 74 (2006) 144109.
  • [37] Cahill D. G., Watson S. K., Pohl R. O.: Lower limit to the thermal conductivity of disordered crystals. Physical Review B 46 (1992) 6131÷6140.
  • [38] Clarke D. R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coating Technology 163 (2003) 67÷74.
  • [39] Klemens P. G.: Phonon scattering by oxygen vacancies in ceramics. Physica B 102-104 (1999) 263÷264.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2e3f0a2-72b3-4fdd-ba73-cd3b47757c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.