Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 12 | 173--176
Tytuł artykułu

Computer-aided auscultation system for cardiac monitoring

Treść / Zawartość
Warianty tytułu
PL
Komputerowo wspomagany system osłuchiwania do monitorowania pracy serca
Języki publikacji
EN
Abstrakty
EN
The heart is a vital organ responsible for blood circulation throughout the body, delivering oxygen and nutrients to every living cell. Diagnosing and treating medical conditions is important to preserve human life accurately. To achieve this, an electronic stethoscope has been developed to record and analyse heart sounds. This study aims to computationally segment and identify cardiac signals using an envelope-based strategy with reference data, utilising the PASCAL Classifying Heart Sounds Challenge database. The findings indicate that the proposed method for detecting and partitioning the typical cardiac acoustic waveform exhibits a precision rate of 95.30% and an F1-score of 91.00%. The technique is well-suited for application to the two prominent peaks in heart sound signals, namely S1 and S2, which exhibit continuous variation across samples due to differences in auscultatory sites.
PL
Serce jest ważnym narządem odpowiedzialnym za krążenie krwi w całym ciele, dostarczając tlenu i składników odżywczych do każdej żywej komórki. Ważne jest, aby precyzyjnie zdiagnozować i leczyć warunki medyczne w celu zachowania życia ludzkiego. Aby to osiągnąć, opracowano elektroniczny stetoskop, który elektronicznie rejestruje i analizuje dźwięki serca. Celem tego badania jest segmentacja obliczeniowa i identyfikacja sygnałów sercowych przy użyciu strategii opartej na kopercie z danymi referencyjnymi, z wykorzystaniem bazy danych PASCAL Classifying Heart Sounds Challenge. Wyniki wskazują, że proponowana metoda wykrywania i podziału typowej formy fali akustycznej serca wykazuje dokładność 95,30% i wynik F1 91,00%. Technika jest dobrze przystosowana do stosowania do dwóch wybitnych szczytów sygnałów dźwiękowych serca, a mianowicie S1 i S2, które wykazują ciągłe zmiany w próbkach z powodu różnic w miejscach auskultacyjnych.
Wydawca

Rocznik
Strony
173--176
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Leng S, San Tan R, Chai KT, Wang C, Ghista D, Zhong L. The electronic stethoscope. Biomedical engineering online. 2015 Dec;14(1):1- 37.
  • [2] Emmanuel BS. A review of signal processing techniques for heart sound analysis in clinical diagnosis. Journal of medical engineering & technology. 2012;36(6):303-7.
  • [3] Coviello JS. Auscultation Skills: Breath & Heart Sounds: Lippincott Williams & Wilkins; 2013.
  • [4] Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, Castells F, Roig JM, Silva I, Johnson AE, Syed Z. An open access database for the evaluation of heart sound algorithms. Physiological Measurement. 2016 Nov 21;37(12):2181.
  • [5] Dwivedi AK, Imtiaz SA, Rodriguez-Villegas E. Algorithms for automatic analysis and classification of heart sounds–a systematic review. IEEE Access. 2018 Dec 24;7:8316-45.
  • [6] Giordano N, Knaflitz M. A novel method for measuring the timing of heart sound components through digital phonocardiography. Sensors. 2019 Jan;19(8):1868.
  • [7] Gharehbaghi A, Dutoit T, Sepehri A, Hult P, Ask P, editors. An automatic tool for pediatric heart sounds segmentation. 2011 Computing in Cardiology; 2011: IEEE.
  • [8] Springer DB, Tarassenko L, Clifford GD. Logistic regression-HSMM-based heart sound segmentation. IEEE Transactions on Biomedical Engineering. 2015;63(4):822-32.
  • [9] Zhang Y, Ayyar S, Chen L-H, Li EJ. Segmental convolutional neural networks for detection of cardiac abnormality with noisy heart sound recordings. arXiv preprint arXiv:161201943. 2016.
  • [10] Meziani F, Debbal S, Atbi A. Analysis of phonocardiogram signals using wavelet transform. Journal of Medical Engineering & Technology. 2012;36(6):283-302.
  • [11] Moukadem A, Dieterlen A, Hueber N, Brandt C. A robust heart sounds segmentation module based on S-transform. Biomedical Signal Processing and Control. 2013;8(3):273-81.
  • [12] Yan Z, Jiang Z, Miyamoto A, Wei Y. The moment segmentation analysis of heart sound pattern. Computer methods and programs in biomedicine. 2010;98(2):140-50.
  • [13] Sepehri AA, Gharehbaghi A, Dutoit T, Kocharian A, Kiani A. A novel method for pediatric heart sound segmentation without using the ECG. Computer methods and programs in biomedicine. 2010;99(1):43-8.
  • [14] Atbi A, Debbal S. Segmentation of pathological signals phonocardiogram by using the Shannon energy envelogram. AJCM. 2013;2(1):1-14.
  • [15] Varghees VN, Ramachandran K. A novel heart sound activity detection framework for automated heart sound analysis. Biomedical Signal Processing and Control. 2014;13:174-88.
  • [16] Sun S, Jiang Z, Wang H, Fang Y. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Computer methods and programs in biomedicine. 2014 May 1;114(3):219-30.
  • [17] Belmecheri MZ, Ahfir M, Kale I. Automatic heart sounds segmentation based on the correlation coefficients matrix for similar cardiac cycles identification. Biomedical Signal Processing and Control. 2018 May 1;43:300-10.
  • [18] Ari S, Kumar P, Saha G. A robust heart sound segmentation algorithm for commonly occurring heart valve diseases. Journal of medical engineering & technology. 2008;32(6):456- 65.
  • [19] Bentley P, Nordehn G, Coimbra M, Mannor S, Getz RJShwpchih. The pascal classifying heart sounds challenge 2011 (chsc2011) results. 2011.
  • [20] Lee C, Rankin KN, Zuo KJ, Mackie AS. Computer-aided auscultation of murmurs in children: evaluation of commercially available software. Cardiology in the Young. 2016 Oct;26(7):1359 -64.
  • [21] Lavielle M. Using penalized contrasts for the change-point problem. Signal processing. 2005 Aug 1;85(8):1501-10.
  • [22] Singh K. Systolic and diastolic ratio and rate pressure product in anemia. Indian J Clin Pract. 2013; 24:521-3.
  • [23] Yuenyong S, Nishihara A, Kongprawechnon W, Tungpimolrut K. A framework for automatic heart sound analysis without segmentation. Biomedical engineering online. 2011;10(1):13.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2c289d7-b615-47a5-a445-588d8413b380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.