Warianty tytułu
Języki publikacji
Abstrakty
Realizing the growing importance and availability of motor vehicles, we observe that the main source of pollution in the street canyons comes from the dispersion of automobile engine exhaust gas. It represents a substantial effect on the micro-climate conditions in urban areas. Seven idealized-2D building configurations are investigated by numerical simulations. The turbulent Schmidt number is introduced in the pollutant transport equation in order the take into account the proportion between the rate of momentum turbulent transport and the mass turbulent transport by diffusion. In the present paper, we attempt to approach the experimental test results by adjusting the values of turbulent Schmidt number to its corresponding application. It was with interest that we established this link for achieving our objectives, since the numerical results agree well with the experimental ones. The CFD code ANSYS CFX, the k, e and the RNGk-e models of turbulence have been adopted for the resolutions. From the simulation results, the turbulent Schmidt number is a range of 0.1 to 1.3 that has some effect on the prediction of pollutant dispersion in the street canyons. In the case of a flat roof canyon configuration (case: runa000), appropriate turbulent Schmidt number of 0.6 is estimated using the k-epsilon model and of 0.5 using the RNG k-e model.
Rocznik
Tom
Strony
423--436
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
- Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie – Mohamed Boudiaf – Oran El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie , bouabdellah.abed@univ-usto.dz
autor
- Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie – Mohamed Boudiaf – Oran El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie , lakhdar.bouarbi@univ-usto.dz
autor
- Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie – Mohamed Boudiaf – Oran El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie , kamal.hamidou@univ-usto.dz
autor
- Laboratoire de Mécanique Appliquée, Université des Sciences et de la Technologie – Mohamed Boudiaf – Oran El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algérie , mohamed.bouzit@univ-usto.dz
Bibliografia
- Ahmad, K., Khare, M. & Chaudhry, K.K. (2005). Wind tunnel simulation studies on dispersion at urban street canyons and intersections – a review. Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 697-717.
- Allegrini, J., Dorer, V. & Carmeliet, J. (2014). Buoyant flows in street canyons: Validation of CFD simulations with wind tunnel measurements. Building and Environment, 72, 63-74.
- Assimakopoulos, V.D., ApSimon, H.M. & Moussiopoulos, N. (2003). A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmospheric Environment, 37(29), 4037-4049.
- Baik, J.J., & Kim, J.J. (2002). On the escape of pollutants from urban street canyons. Atmospheric Environment, 36(3), 527-536.
- Baik, J.J., Park, R.S., Chun, H.Y., & Kim, J.J. (2000). A laboratory model of urban streetcanyon flows. Journal of Applied Meteorology, 39(9), 1592-1600.
- Baker, C.J. & Hargreaves, D.M. (2001). Wind tunnel evaluation of a vehicle pollution dispersion model. Journal of Wind Engineering and Industrial Aerodynamics, 89(2), 187-200.
- Blocken, B., Stathopoulos, T., Saathoff, P. & Wang, X. (2008). Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(10), 1817-1831.
- Caton, F., Britter, R.E. & Dalziel, S. (2003). Dispersion mechanisms in a street canyon. Atmospheric Environment, 37(5), 693-702.
- Chan, T.L., Dong, G., Leung, C.W., Cheung, C.S. & Hung, W. T. (2002). Validation of a two- -dimensional pollutant dispersion model in an isolated street canyon. Atmospheric Environment, 36(5), 861-872.
- Cui, P.Y., Li, Z. & Tao, W.Q. (2014). Investigation of Re-independence of turbulent flow and pollutant dispersion in urban street canyon using numerical wind tunnel (NWT) models. International Journal of Heat and Mass Transfer, 79, 176-188.
- Efthimiou, G.C., Berbekar, E., Harms, F., Bartzis, J.G. & Leitl, B. (2015). Prediction of high concentrations and concentration distribution of a continuous point source release in a semi-idealized urban canopy using CFD-RANS modeling. Atmospheric Environment, 100, 48-56.
- Flesch, T.K., Prueger, J.H. & Hatfield, J.L. (2002). Turbulent Schmidt number from a tracer experiment. Agricultural and Forest Meteorology, 111(4), 299-307.
- Frank, J., Hellsten, A., Schlünzen, H. & Carissimo, B. (2007). Best practice guideline for the CFD simulation of flows in the urban environment. In the COST Action 732. Quality Assurance and Improvement of Meteorological Models. University of Hamburg, Meteorological Institute, Center of Marine and Atmospheric Sciences.
- Gallagher, J., Gill, L. W. & McNabola, A. (2012). Numerical modelling of the passive control of air pollution in asymmetrical urban street canyons using refined mesh discretization schemes. Building and Environment, 56, 232-240.
- Gromke, C. & Blocken, B. (2015). Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: Quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. Environmental Pollution, 196, 214-223.
- Gromke, C. & Ruck, B. (2007). Influence of trees on the dispersion of pollutants in an urban street canyon – experimental investigation of the flow and concentration field. Atmospheric Environment, 41(16), 3287-3302.
- Gromke, C. & Ruck, B. (2009). On the impact of trees on dispersion processes of traffic emissions in street canyons. Boundary-Layer Meteorology, 131(1), 19-34.
- Huang, H., Akutsu, Y., Arai, M. & Tamura, M. (2000). A two-dimensional air quality model in an urban street canyon: evaluation and sensitivity analysis. Atmospheric Environment, 34(5), 689-698.
- Huang, Y.D., Jin, M.X. & Sun, Y.N. (2007). Numerical studies on airflow and pollutant dispersion in urban street canyons formed by slanted roof buildings. Journal of Hydrodynamics, Ser. B, 19(1), 100-106.
- Huang, Y.D., He, W.R. & Kim, C.N. (2015). Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon. Environmental Science and Pollution Research, 22(3), 2117-2137.
- Huang, Y., Hu, X. & Zeng, N. (2009). Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Building and Environment, 44(12), 2335-2347.
- Kastner-Klein, P., Fedorovich, E. & Rotach, M.W. (2001). A wind tunnel study of organised and turbulent air motions in urban street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 89(9), 849-861.
- Kastner-Klein, P. & Plate, E.J. (1999). Wind-tunnel study of concentration fields in street canyons. Atmospheric Environment, 33(24), 3973-3979.
- Kim, J.J. & Baik, J.J. (2005). Physical experiments to investigate the effects of street bottom heating and inflow turbulence on urban street-canyon flow. Advances in Atmospheric Sciences, 22(2), 230-237.
- Koeltzsch, K. (2000). The height dependence of the turbulent Schmidt number within the boundary layer. Atmospheric Environment, 34(7), 1147-1151.
- Kovar-Panskus, A., Moulinneuf, L., Savory, E., Abdelqari, A., Sini, J. F., Rosant, J. M. ... & Toy, N. (2002). A wind tunnel investigation of the influence of solar-induced wall-heating on the flow regime within a simulated urban street canyon. Water, Air and Soil Pollution: Focus, 2(5-6), 555-571.
- Launder, B.E. & Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.
- Li, X.X., Liu, C.H., Leung, D.Y. & Lam, K.M. (2006). Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmospheric Environment, 40(29), 5640-5658.
- Li, X.X., Leung, D.Y., Liu, C.H. & Lam, K.M. (2008). Physical modeling of flow field inside urban street canyons. Journal of Applied Meteorology and Climatology, 47(7), 2058-2067.
- Liu, C.H. & Wong, C.C. (2014). On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons. Atmospheric Research, 135, 128-142.
- Madalozzo, D.M.S., Braun, A.L., Awruch, A.M. & Morsch, I.B. (2014). Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects. Applied Mathematical Modelling, 38(24), 5883-5909.
- Meroney, R.N., Leitl, B.M., Rafailidis, S. & Schatzmann, M. (1999). Wind-tunnel and numerical modeling of flow and dispersion about several building shapes. Journal of Wind Engineering and Industrial Aerodynamics, 81(1), 333-345.
- Meroney, R.N., Rafailidis, S. & Pavageau, M. (1996). Dispersion in idealized urban street canyons. In Air Pollution Modeling and Its Application XI (pp. 451-458). Springer US.
- Moonen, P., Gromke, C. & Dorer, V. (2013). Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting. Atmospheric Environment, 75, 66-76.
- Nazridoust, K. & Ahmadi, G. (2006). Airflow and pollutant transport in street canyons. Journal of Wind Engineering and Industrial Aerodynamics, 94(6), 491-522.
- Ng, W.Y. & Chau, C.K. (2014). A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons. Science of the Total Environment, 468, 429-448.
- Pavageau, M. & Schatzmann, M. (1999). Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmospheric Environment, 33(24), 3961-3971.
- Rafailidis, S. (1997). Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-layer Meteorology, 85(2), 255-271.
- Rafailidis, S. & Schatzmann, M. (1995). Concentration measurements with different roof patterns in street canyons with aspect ratios B/H= 1/2 and B/H= 1. Report. Hamburg: Meteorology Institute, University of Hamburg.
- Salim, S.M., Buccolieri, R., Chan, A. & Di Sabatino, S. (2011). Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 99(2), 103-113.
- Sini, J.F., Anquetin, S. & Mestayer, P.G. (1996). Pollutant dispersion and thermal effects in urban street canyons. Atmospheric Environment, 30(15), 2659-2677.
- Takano, Y. & Moonen, P. (2013). On the influence of roof shape on flow and dispersion in an urban street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 123, 107-120.
- Theodoridis, G. & Moussiopoulos, N. (2000). Influence of building density and roof shape on the wind and dispersion characteristics in an urban area: a numerical study. In Urban Air Quality: Measurement, Modelling and Management (pp. 407-415). Springer, Netherlands.
- Tominaga, Y., & Stathopoulos, T. (2013). CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmospheric Environment, 79, 716-730.
- Tong, N.Y. & Leung, D.Y. (2012). Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons. Journal of Environmental Sciences, 24(12), 2091-2103.
- Vardoulakis, S., Fisher, B.E., Pericleous, K. & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: a review. Atmospheric Environment, 37(2), 155-182.
- Xie, X., Huang, Z. & Wang, J.S. (2005). Impact of building configuration on air quality in street canyon. Atmospheric Environment, 39(25), 4519-4530.
- Xiaomin, X., Zhen, H. & Jiasong, W. (2006). The impact of urban street layout on local atmospheric environment. Building and Environment, 41(10), 1352-1363.
- Yakhot, V.S.A.S. T.B.C.G., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
- Yassin, M.F. (2011). Impact of height and shape of building roof on air quality in urban street canyons. Atmospheric Environment, 45(29), 5220-5229.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2a74bb6-68fc-4d27-a922-d72cbf8dc1ab