Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 27, nr 1 | 113--127
Tytuł artykułu

An evaluation of the effectiveness of nanosilver in swimming pool water treatment - water quality and toxicity of the product

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of applying a colloidal solution of nanosilver in the closed circuit of pool water treatment as a complementary disinfectant with chlorine compounds was presented. The applied nanosilver solution is characterized, by hygienic certificate, as having a very high biocidal effect. Samples of pool water for the control were taken from 5 points of a pool circuit. The safety of the water was appraised by comparing the bacteriological and physicochemical test results with the admissible values specified by hygienic requirements. The results show that nanosilver solution can be successfully applied for precoating the filter bed and supporting the disinfection system. Special attention was paid to the bacteriological purity and stability of the disinfectant concentration. The influence of concentration of colloidal nanosilver (0-25 mg/dm3) on bacterial bioluminescence, crustacean mortality and macroscopic effect of root growth and seed germination of selected plants was analysed. The results obtained were related to the current knowledge on the impact of nanoparticles on indicator organisms. It was found that due to many still unknown mechanisms of interaction and transformation of nanoparticles in living organisms, further study of this issue is necessary.
Wydawca

Rocznik
Strony
113--127
Opis fizyczny
Bibliogr. 51 poz., rys., wykr., tab.
Twórcy
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 16 98, fax +48 237 10 47, joanna.wyczarska-kokot@polsl.pl
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 16 98, fax +48 237 10 47
  • Institute of Water and Wastewater Engineering, Silesian University of Technology, ul. S. Konarskiego 18, 44-100 Gliwice, Poland, phone +48 32 237 16 98, fax +48 237 10 47
Bibliografia
  • [1] DIN 19643 1-4:1997. Aufbereitung von Schwimm und Badebeckenwasser (Water treatment for swimming and bathing pools). Beuth-Verlag, Berlin/Düsseldorf, 1997. www.beuth.de/de/norm/din-19643-1/2936483.
  • [2] Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar. Geneva: WHO; 2006. http://www.who.int/water_sanitation_health/bathing/srwe2full.pdf.
  • [3] DIN 19643 1-4:2012-11. Aufbereitung von Schwimm und Badebeckenwasser (Water treatment for swimming and bathing pools). Beuth-Verlag, Berlin, 2012. www.beuth.de/de/norm/din-19643-1/164174095.
  • [4] ZHK NIZP-PZH: Zalecenia dotyczące wymagań sanitarno-higienicznych dla obiektów basenowych i jakości wody w basenach przeznaczonych dla niemowląt i dzieci w wieku od 6 miesięcy do 3 lat (Recommendations on Sanitary and Hygienic Requirements for Swimming Pools and Water Quality in Pools for Babies and Children from 6 Months to 3 Years Old). Warszawa: 2012. http://www.pzh.gov.pl.
  • [5] Rozporządzenie Ministra Zdrowia z dn. 9 listopada 2015 r. w sprawie wymagań jakim powinna odpowiadać woda na pływalniach, Dz. U. 2015, poz. 2016. (Polish Ordinance of the Minister of Health of 9 November 2015: On the requirements that should be met by swimming pool water) http://isap.sejm.gov.pl/DetailsServlet?id=WDU20150002016.
  • [6] Wyczarska-Kokot J. Effect of disinfection methods on microbiological water quality in indoor swimming pools. Archit Civ Eng Environ. 2009;4:145-52. http://www.acee-journal.pl/1,7,13,Issues.html.
  • [7] Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of different combinations of water treatment processes on the concentration of disinfection byproducts and their precursors in swimming pool water. Environ Sci Technol. 2019; 53:8115-26. DOI:10.1021/acs.est.9b00491.
  • [8] Chowdhury S, Alhooshani K, Karanfil T. Disinfection by-products in swimming pool: Occurrences, implications and future needs. Water Res. 2014;53:68-109. DOI: 10.1016/j.watres.2014.01.017.
  • [9] Wyczarska-Kokot J, Lempart A, Dudziak M. Chlorine contamination in different points of pool - risk analysis for bathers’ health. Ecol Chem Eng A. 2017;24: 217-26. DOI:10.2428/ecea.2017.24(2)23.
  • [10] Cheema WA, Kaarsholm KMS, Andersen HR. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. Water Res. 2017;110:141-9. DOI: 10.1016/j.watres.2016.12.008.
  • [11] Łaskawiec E, Madej M, Dudziak M, Wyczarska-Kokot J. The use of membrane techniques in swimming pool water treatment. J Ecol Eng. 2017;18:130-6. DOI: 10.12911/22998993/74282.
  • [12] Kim D, Ates N, Kaplan Bekaroglu S, Selbes M, Karanfil T. Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools. J Environ Sci. 2017;58:155-62. DOI: 10.1016/j.jes.2017.04.020.
  • [13] Tardif R, Rodriguez M, Catto C, Charest-Tardif G, Simard S. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study. J Environ Sci. 2017;58:163-72. DOI: 10.1016/j.jes.2017.05.021.
  • [14] Gomà A, de Lluis R, Roca-Ferrer J, Lafuente J, Picado C. Respiratory, ocular and skin health in recreational and competitive swimmers: Beneficial effect of a new method to reduce chlorine oxidant derivatives. Environ Res. 2017;152:315-21. DOI: 10.1016/j.envres.2016.10.030.
  • [15] Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013 39(4):373-83. DOI: 10.3109/1040841X.2012.713323.
  • [16] Zhang H. Application of silver nanoparticles in drinking water purification. Open Access Dissertations, Paper 29. Kingston: University of Rhode Island; 2013. http://digitalcommons.uri.edu/oa_diss/29.
  • [17] Tugulea AM, Bérubé D, Giddings M, Lemieux F, Hnatiw J, Priem J et al. Nano-silver in drinking water and drinking water sources: Stability and influences on disinfection by-product formation. Environ Sci Pollut Res Int. 2014;21:11823-31. DOI: 10.1007/s11356-014-2508-5.
  • [18] Yang, X. A Study on Antimicrobial Effects of Nanosilver for Drinking Water Disinfection. Singapore: Springer Nature; 2017. ISBN 978-981-10-2902-8.
  • [19] Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50(16):8840-8. DOI: 10.1021/acs.est.6b00998.
  • [20] Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Bauna A. Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquatic Toxicol. 2015;161:10-6. DOI: 10.1016/j.aquatox.2015.01.023.
  • [21] Zou X, Li P, Huang Q, Zhang H. The different response mechanisms of Wolffia globosa: Light-induced silver nanoparticle toxicity. Aquatic Toxicol. 2016;176:97-105. DOI: 10.1016/j.aquatox.2016.04.019.
  • [22] Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, et al. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic. 2017;76:230-9. DOI: 10.1016/j.ecolind.2017.01.018.
  • [23] Zhang W, Xiao B, Fang T. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity. Chemosphere. 2018;191:324-34. DOI: 10.1016/j.chemosphere.2017.10.016.
  • [24] McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116-27. DOI: 10.1016/j.jfda.2014.01.010.
  • [25] Hsieh CY, Tsai MH, Rayan DK, Pancorbo OC. Toxicity of the 13 priority pollutant metals to Vibrio fischeri in the Microtox® chronic toxicity test. Sci Total Environ. 2008;320(1):37-50. DOI: 10.1016/S0048-9697(03)00451-0.
  • [26] Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181-200. DOI: 10.1007/s00204-013-1079-4.
  • [27] Down RD, Lehr JH. Environmental Instrumentation and Analysis Handbook. New York: Wiley; 2005. ISBN: 9780471463542.
  • [28] Kaul K. Handbook of Water and Wastewater Analysis. New Delhi: Atlantic Publishers and Distributors; 2007. ISBN 10 8126906103.
  • [29] PN-EN ISO 9308-1:2014-12. Water quality - Quantification of Escherichia coli and coliforms - Part 1: Membrane filtration method for testing waters with low accompanying microflora. https://sklep.pkn.pl/pn-en-iso-9308-1-2014-12e.html.
  • [30] PN-EN ISO 6222:2004. Water quality - Quantification of microorganisms capable of growth - Determination of total colony count by inoculation on nutrient agar. https://www.iso.org/standard/28960.html.
  • [31] PN-EN ISO 11731-2:2008. Water quality - Detection and quantification of Legionella bacteria - Part 2: Membrane filtration method for waters with low bacterial counts. https://sklep.pkn.pl/pn-en-iso-11731-2-2008e.html.
  • [32] PN-EN ISO 6888-1:2001/A1:2004. Food and feed microbiology - Horizontal method for determining the number of coagulase positive staphylococci (Staphylococcus aureus and other species) - Part 1: Method using Baird-Parker agar medium. https://sklep.pkn.pl/catalogsearch/result/?q=PN-EN%20ISO%206888-1:2001/A1:2004.
  • [33] World Health Organization. Silver in Drinking-Water; Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; WHO/SDE/WSH/03.04/14; WHO: Geneva, Switzerland, 2003. http://www.who.int/water_sanitation_health/dwq/chemicals/silver.pdf.
  • [34] ISO 11348-3:2007: Water quality - Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) - Part 3: Method using freeze-dried bacteria, 2007. www.iso.org/standard/40518.html.
  • [35] Hartl M, Humpf HU. Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food Chem Toxicol. 2005;38(12):1097-102. DOI: 10.1016/S0278-6915(00)00112-5.
  • [36] Svensson BM, Mathiasson L, Mårtensson L, Bergström S. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environ Monit Assess. 2005;2:309-21. DOI: 10.1007/s10661-005-6029-z.
  • [37] Sims I. Whitehouse P, Lacey R. The OECD Lemna growth inhibition test. Report No. EA 4784, Environment Agency, USEPA Office of Prevention Pesticides and Toxic Substances. Washington: 1999. http://www.oecd.org/chemicalsafety/testing/1948054.pdf.
  • [38] Phytotoxkit: Seed germination and early growth microbiotest with higher plants. Standard operational procedure. MicroBioTest Inc., 24p. Mariakerke, 2004. http://www.microbiotests.be/SOPs/Phytotoxkit%20SOP%20-%20A5.pdf.
  • [39] van Veldhoven K, Keski-Rahkonen P, Barupal DK, Villanueva CM, Font-Ribera L, Scalbert A, et al. Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environ Int. 2018;111:60-70. DOI: 10.1016/j.envint.2017.11.017.
  • [40] Westerlund J, Bryngelsson IL, Löfstedt H, Eriksson K, Westberg H, Graff P. Occupational exposure to trichloramine and trihalomethanes: adverse health effects among personnel in habilitation and rehabilitation swimming pools. J Occup Environ Hyg. 2019;16:78-88. DOI: 10.1080/15459624.2018.1536825.
  • [41] Andersson M, Backman H, Nordberg G, Hagenbjörk A, Hedman L, Eriksson K et al. Early life swimming pool exposure and asthma onset in children - a case-control study. Environ Health. 2018;17:34. DOI: 10.1186/s12940-018-0383-0.
  • [42] Florentin A, Hautemaniere A, Hartemann P. Health effects of disinfection by-products in chlorinated swimming pools. Int J Hyg Environ Health. 2011;214:461-9. DOI: 10.1016/j.ijheh.2011.07.012.
  • [43] Golovina NB, Kustov LM. Toxicity of metal nanoparticles with a focus on silver. Mendeleev Commun. 2013; 23:59-65. DOI: 10.1016/j.mencom.2013.03.001.
  • [44] McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ. 2017;575:231-46. DOI: 10.1016/j.scitotenv.2016.10.041.
  • [45] Heinlaan M, Muna M, Knobel M, Kistler D, Odzak N, Kühnel D, et al. Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: An interlaboratory case study. Environ Pollut. 2016;216:689-99. DOI: 10.1016/j.envpol.2016.06.033.
  • [46] Echavarri-Bravo V, Paterson L, Aspray TJ, Porter JS, Winson MK, Hartl MGJ. Natural marine bacteria as model organisms for the hazard assessment of consumer products containing silver nanoparticles. Mar Environ Res. 2017;130:293-302. DOI: 10.1016/j.marenvres.2017.08.006.
  • [47] Jemec A, Kahru A, Potthoff A, Drobne D, Heinlaan M, Böhme S, et al. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environ Int. 2016;87:20-32. DOI: 10.1016/j.envint.2015.10.014.
  • [48] Cox A, Venkatachalam P, Sahi S, Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol Biochem. 2016;107:147-63. DOI: 10.1016/j.plaphy.2016.05.022.
  • [49] Pittol M, Tomacheski D, Simõesa DN, Ribeiro VF, Santana RMC. Macroscopic effects of silver nanoparticles and titanium dioxide on edible plant growth, Environ Nanotechnol Monit Manage. 2017;8:127-33. DOI: 10.1016/j.enmm.2017.07.003.
  • [50] Barabanov PV, Gerasimov AV, Blinov AV, Kravtsov AA, Kravtsov VA. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol Environ Safety. 2018;147:715-9. DOI: 10.1016/j.ecoenv.2017.09.024.
  • [51] World Health Organization. Guidelines for Drinking-Water Quality. Geneva: World Health Organization, 2011. ISBN: 9789241548151. http://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf;jsessionid=5AF1C174F31F113C82076A7361781E12?sequence=1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2934ac1-70d2-44cf-87a9-79505e72f75b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.