Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Zastosowanie spektroskopii z transformacją Fouriera w podczerwieni do wykrywania biomarkerów bakteryjnych w suchych osadach korozyjnych
Języki publikacji
Abstrakty
Infrared spectroscopy (IR) may be used to indicate the presence of microorganisms in various deposits including these formed inside the drinking water distribution systems (DWDSs). The aim of this study was to examine the presence and intensity of absorption bands characteristic for dipicolinic acid (DPA) and other biomarkers of bacteria which probably formed biofilms in old, naturally dried deposits collected from corroded steel and cast iron pipes. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to examine the presence and intensity of absorption bands that are characteristic of biomolecules deriving from bacterial cells. Our results showed a different chemical composition of deposits collected from various fragments of pipes and the presence of the microorganisms residues. We showed the possibility of using the DRIFT technique for rapid determination of biological contamination of dry corrosion deposits present in DWDSs. Analysis of the IR spectra second derivatives enabled for the precise determination of absorption maxima that were used to indicate the presence of amides, polypeptides, and fatty acids.
Spektroskopia w podczerwieni (IR) może być wykorzystywana do wykazania obecności mikroorganizmów w różnych osadach, w tym tych powstałych w systemach dystrybucji wody pitnej (DWDS). Celem pracy było zbadanie obecności i intensywności pasm absorpcyjnych charakterystycznych dla kwasu dipikolinowego (DPA) i innych biomarkerów bakterii, które prawdopodobnie tworzyły biofilm w starych, naturalnie odwodnionych osadach pobranych ze skorodowanych rur stalowych i żeliwnych. Do zbadania obecności i intensywności pasm absorpcyjnych charakterystycznych dla biocząsteczek pochodzących z komórek bakteryjnych wykorzystano spektroskopię rozproszonego odbicia w zakresie podczerwieni z transformatą Fouriera (DRIFT). Badania wykazały zróżnicowany skład chemiczny osadów pobranych z różnych fragmentów rur oraz obecność pozostałości mikroorganizmów. Pokazano możliwość wykorzystania techniki DRIFT do szybkiego oznaczania biologicznego skażenia suchych osadów korozyjnych występujących w DWDS. Analiza drugich pochodnych widm IR pozwoliła na precyzyjne określenie maksimów absorpcji, które wykorzystano do wskazania obecności amidów, polipeptydów i kwasów tłuszczowych.
Czasopismo
Rocznik
Tom
Strony
251--257
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2, Gliwice, Poland, jolanta.t.szczytow@polsl.pl
autor
- Centre of Biotechnology at Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
autor
- Institute of Non-Ferrous Matals, Gliwice, Poland
Bibliografia
- [1] R. Davis, L.J. Mauer. 2010. Fourier Transform Infrared (FT-IR) Spectroscopy: A Rapid Tool for Detection and Analysis of Foodborne Pathogenic Bacteria. In: A. Méndez-Vilas (ed.). Current Research Technology and Education Topics in Applied Microbiology and Microbial Biotechnology: 15281594. Badajoz, Spain: Formatex.
- [2] F. Quilês, F. Humbert, A. Delile. 2010. “Analysis of Changes in Attenuated Total Reflection FTIR Fingerprints of Pseudomonas fluorescens from Planktonic State to Nascent Biofilm State”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75 (2): 610–616. DOI: 10.1016/j.saa.2009.11.026.
- [3] F. Echeverría, J.G. Costaño, C. Arroyave, G. Peñuela, A. Ramίrez, J. Morat. 2009. “Characterization of Deposits Formed in a Water Distribution System”. Ingeniare. Revista Chilena de Ingenieria 17 (2): 275–281. DOI: 10.4067/S0718-33052009000200016.
- [4] V. Chawla, P.G. Gurbuxani, G.R. Bhagure. 2012. “Corrosion of Water Pipes: A Comprehensive Study of Deposits”. Journal of Minerals and Materials Characterization and Engineering 11 (5): 479–492. DOI:10.4236/JMMCE.2012.115034.
- [5] R. Goodacre, B. Shann, R.J. Gilbert, E.M. Timmins, A.C. McGovern, B.J. Alsberg, D.B. Kell, N.A. Logan. 2000. “Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy”. Analytical Chemistry 72 (1): 119–127. DOI: 10.1021/ac990661i.
- [6] K. McCann, J. Laane. 2008. “Raman and Infrared Spectra and Theoretical Calculations of Dipicolinic Acid, Dinicotinic Acid, and Their Dianions”. Journal of Molecular Structure 890 (1–3): 346–358. DOI: 10.1016/j.molstruc.2008.05.046.
- [7] P. Carmona. 1980. “Vibrational Spectra and Structure of Crystalline Dipicolinic Acid and Calcium Dipicolinate Trihydrate”. Spectrochimica Acta Part A: Molecular Spectroscopy 36 (7): 705–712. DOI: 10.1016/0584-8539(80)80032-8.
- [8] V. Prabhakar. 2009. “Rapid Quantification of Dipicolinic Acid from Spores Treated by Pressure Assisted Thermal Processing Using Infrared Spectroscopy”. Proceedings of 2009 IFT Annual Meeting, 6–9 June: 1–13. Anaheim, CA, USA.
- [9] S. Liu, C. Gunawan, N. Barraud, S.A. Rice, E.J. Harry, R. Amal. 2016. “Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution System”. Environmental Science and Technology 50 (17): 8954–8976. DOI: 10.1021/acs.est.6b00835.
- [10] H. Wang, S. Masters, J.O. Falkinham III, M.A. Edwards, A. Pruden. 2015. “Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters”. Environmental Science and Technology 49 (14): 8416–8424. DOI: 10.1021/acs.est.5b01538.
- [11] N. AlMasoud, H. Muhamadali, M. Chisanga, H. AlRabiah, C.A. Lima, R. Goodacre. 2021. “Discrimination of Bacteria Using Whole Organism Fingerprinting: The Utility of Modern Physicochemical Techniques for Bacterial Typing”. Analyst 3. DOI: 10.1039/d0an01482f.
- [12] J. Turek-Szytow, A. Hryniszyn-Kula, B. Cwalina. 2021. Sposób wyznaczania obecności mikroorganizmów w pierwotnie odwodnionych osadach zwłaszcza w instalacjach wodociągowych. Patent polski, PL 237875, WUP 12/21.
- [13] C. Rubio, Ch. Ott, C. Amiel, I. Dupont-Moral, J. Travert, L. Mariey. 2006. “Sulfato/Thiosulfato Reducing Bacteria Characterization by FT-IR Spectroscopy: A New Approach to Biocorrosion Control”. Journal of Microbiological Methods 64 (3): 287–296. DOI: 10.1016/j.mimet.2005.05.013.
- [14] G. Talsky. 1994. Derivative Spectrophotometry. Weinheim, Germany: VCH.
- [15] J. Torrent, V. Barrόn. 2008. Diffuse Reflectance Spectroscopy. In: A.L. Ulrey, L.R. Drees (eds.). Methods of Soil Analysis. Part 5: Mineralogical Methods: 367–385. Madison, WI, USA: Soil Science Society of America.
- [16] J. Turek-Szytow, A. Hryniszyn, B. Cwalina. 20015. “Diffuse Reflectance Infrared Fourier Transform Spectra of Biofilm-Containing Sediments: Influence of Sample Lyophilization and Drying Temperature”. Analytical Letters 48 (13): 2051-2062. DOI: 10.1080/00032719.2015.1017765.
- [17] E.F. Greene, S. Tauch, E. Webb, D. Amarasiriwardena. 2004. “Application of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the Identification of Potential Diagenesis and Crystallinity Changes in Teeth”. Microchemical Journal 76 (1–2): 141–149. DOI: 10.1016//j.microc.2003.11.006.
- [18] V. Džimbeg-Malčić, Ž. Barbarić-Mikočević, K. Itrić. 2011. “Kubelka-Munk Theory in Describing Optical Properties of Paper (I)”. Technički Resnik 18: 117–124.
- [19] HunterLab. 2008. “The Kubelka-Monk Theory and K/S”. Applications Note 18 (7).
- [20] V.S. Saakov, V.Z. Drapkin, A.I. Krivchenko, E.V. Rozengart, Y.V. Bogachev, M.N. Knyazev. 2013. Derivative Spectrophotometry and Electron Spin Resonance (ESR): Spectroscopy for Ecological and Biological Questions. Vienna: Springer-Verlag.
- [21] D. Naumann. 2000. Infrared Spectroscopy in Microbiology. In: R.A. Meyers (ed.). Encyclopedia of Analytical Chemistry: 102–131. Chichester, UK: John Wiley and Sons.
- [22] R.M. Silverstein, F.G. Webster, D.J. Kiemle. 2012. Spektroskopowe metody identyfikacji związków organicznych. Warszawa: Wydawnictwo Naukowe PWN.
- [23] A. Alvarez-Ordόñez, D.J.M. Mouwen, M. López, M. Prieto. 2011. “Fourier Transform Infrared Spectroscopy as a Tool to Characterize Molecular Composition and Stress Response in Foodborne Pathogenic Bacteria”. Journal of Microbiological Methods 84 (3): 369–378. DOI: 10.1016/ /j.mimet.2011.01.009.
- [24] A. Bombalska, M. Mularczyk-Oliwa, M. Kwaśny, M. Włodarski, M. Kaliszewski, K. Kopczyński, M. Szpakowska, E.A. Trafny. 2011. “Classification of the Biological Materials with Use of FTIR Spectroscopy and Statistical Analysis”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78 (4): 122–1226. DOI: 10.1016/j.saa.2010.10.025.
- [25] J.J. Ojeda, M.E. Romero-González, S.A. Banwart. 2009. “Analysis of Bacteria on Steel Surfaces Using Reflectance Micro-Fourier Transform Infrared Spectroscopy”. Analytical Chemistry 81 (15): 6467–6473. DOI: 10.1021/ac900841c.
- [26] B. Dziuba, B. Nalepa. 2012. “Identification of Lactic Acid Bacteria and Propionic Acid Bacteria Using FTIR Spectroscopy and Artificial Neural Networks”. Food Technology and Biotechnology 50 (4): 399–405.
- [27] K.G. Zink, H. Wilkes, U. Disko, M. Elvert, B. Horsfield. 2003. “Intact Phospholipids – Microbial »Life Markers« in Marine Deep Subsurface Sediments”. Organic Geochemistry 34 (6): 755–769. DOI: 10.1016/S0146-6380(03)00041-X.
- [28] P.E. Rossel, J.S. Lipp, H.F. Fredricks, J. Arnds, A. Boetius, M. Elvert, K.-U. Hinrichs. 2008. “Intact Polar Lipids of Anaerobic Methanotrophic Archaea and Associated Bacteria”. Organic Geochemistry 39 (8): 992–999. DOI: 10.1016/j.orggeochem.2008.02.021.
- [29] F. Schubotz, S.G. Wakeham, J.S. Lipp, H.F. Fredricks, K.-U. Hinrichs. 2009. “Detection of Microbial Biomass by Intact Polar Membrane Lipid Analysis in the Water Column and Surface Sediments of the Black Sea”. Environmental Microbiology 11 (10): 2720–2734. DOI: 10.1111/j.1462-2920.2009.01999.x.
- [30] D.C. White, W.M. Davis, J.S. Nickels, J.D. King, R.J. Bobbie. 1979. “Determination of the Sedimentary Microbial Biomass by Extractible Lipid Phosphate”. Oecologia 40 (1): 51– 62. DOI: 10.1007/BF00388810.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2798645-7be3-4dcb-ba87-aa6480a3abae