Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 11, no. 3 | 153--161
Tytuł artykułu

Coagulant cost optimization for surface water coagulation process

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a study concerning application of different coagulants used in surface water coagulation process. Even though the use of this process is quite wide-spread and several different coagulants are used it would be vital to identify which coagulants are the most effective from the economical point of view. The choice of parameter, such as doses, contact time, speed of mixing are important for cost optimization while maintaining satisfactory results for WTP. Four of the most effective coagulants were taken to the second stage. Three of the four coagulants chosen for the second stage of the study were the same for both tests regardless at water quality parameters. The cost of the process depended above all on raw water contamination, and therefore the coagulant dosage. An analysis of the results has shown that only the non pre-hydrolyzed coagulant allowed for high process effectiveness at low process costs. This coagulant was also the only one to require a pH correction after coagulation. However, this did not significantly increase the coagulation cost.
Wydawca

Rocznik
Strony
153--161
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • The Department of Water and Sewage Treatment Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 Street, 50-370 Wrocław, Poland , malgorzata.wolska@pwr.edu.pl
  • Municipal Water and Sewerage Company in Wrocław, Na Grobli 14/16 Street, 50-421 Wrocław, Poland
autor
  • The Department of Water and Sewage Treatment Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 Street, 50-370 Wrocław, Poland Manicipal Water and Sewerage Company in Wrocław, Na Grobli 14/16 Street, 50-421 Wrocław, Poland
  • The Department of Water and Sewage Treatment Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27 Street, 50-370 Wrocław, Poland Manicipal Water and Sewerage Company in Wrocław, Na Grobli 14/16 Street, 50-421 Wrocław, Poland
  • Manicipal Water and Sewerage Company in Wrocław, Na Grobli 14/16 Street, 50-421 Wrocław, Poland
Bibliografia
  • [1] Deborah, V., Chapmana, Ch., Gettelc, B.G.M., Gábor, I., Heine, H.T., Kovácsf, J., Liskag, I., Oliverh, D.M., Tanosi, P., Trásyf, B., Várbírój, G. (2016). Developments in water quality monitoring and management in large river catchments using the Danube River as an example. Environmental Science & Policy, 64(10), 141-154.
  • [2] Taylor, S. D., He Y., Hiscock, K. M. (2016). Modelling the impacts of agricultural management practices on river water quality in Eastern England. Journal of Environmental Management, 180, 147-163.
  • [3] Yang, L., He, J., Liu, Y., Wang, J., Jiang, L., Wang, G. (2016). Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing, China. Journal of Environmental Sciences, 50, 93-102.
  • [4] Mihai, M., Dabija, G. (2008). Cationic polyelectrolytes- anionic surfactant complexes used in the coagulation flocculation processes. UPB Sci. Bull., Series B, 70(4), 29-36.
  • [5] Miranda, A., Paiva, J. M., Benoliel, M. J. (2010). Assessment of trace metal concentrations in the different processes at water treatment plants of EPAL. In Metals and Related Substances in Drinking Water: COST Action 637: Proceedings of the 4th International Conference Metals and Related Substances in Drinking Water, METEAU: Kristianstad, Sweden, October 13-15, 2010. IWA Publishing, 159.
  • [6] Roussy, J., Van Vooren, M., Dempsey, B. A., Guibal, E. (2005). Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions. Water Research, 39(14), 3247-3258.
  • [7] Dentel, S. K., Gossett, J. M. (1988). Mechanisms of coagulation with aluminum salts. Journal American Water Works Association, 80(4), 187-198.
  • [8] Stephenson, R. J., Duff, S. J. (1996). Coagulation and precipitation of a mechanical pulping effluent - I. Removal of carbon, colour and turbidity. Water Research, 30(4), 781-792.
  • [9] Świderska-Bróż, M., Rak, M. (2004). Significance of aluminium coagulants basicity in intensification of water corrosivity. Archiwum Ochrony Środowiska, 30(2), 39-43.
  • [10] Matilainen, A., Vepsäläinen, M., Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in colloid and interface science, 159(2), 189-197.
  • [11] Zimoch I., Kotlarczyk B., Sołtysik A. (2007). The use of prehydrolyzed coagulants for the enhancement of water treatment efficiency in the Czaniec Water Treatment Plant, Ochrona Środowiska, 3, 45-49.
  • [12] Świderska-Bróż M., Rak M. (2008). Influence of coagulant and pH valume on coloids destabilization. Seminarium naukowo-techniczne. Czysta woda dla Polski, zastosowanie koagulantów w nowoczesnych technologiach uzdatniania wody pitnej i przemysłowej, Darłówek, 7(9).
  • [13] Nowacka A., Włodarczyk-Makuła M. (2014). Impact of selected pre-hydrolyzed aluminum coagulants on improving of treated water quality, Ochrona Środowiska, 1, 336-350
  • [14] Gumińska J. (2002). Influence of temperature on the effetiveness of mountain water treatment by coagulation, Ochrona Środowiska, 1, 27-32.
  • [15] Zhao, H., Wang, L., Hanigan, D., Westerhoff, P. (2016). Ni J. Novel ion-exchange coagulants removal more low molecular weight organics than traditional coagulants. Environmental Science Technology, 50(7), 3897-3905.
  • [16] Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A., Pons, M. N. (2009). Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination, 23(1), 330-339.
  • [17] Duan, J., Wilson, F., Graham, N., Tay, J. H. (2003). Adsorption of humic acid by powdered activated carbon in saline water conditions. Desalination, 151(1), 53-66.
  • [18] Wolska, M., Mołczan, M., Urbańska-Kozłowska, H., Solipiwko-Pieścik, A. (2018). Optimizing of coagulant choice for surface water treatment technology for human consumption; EPE Journal, (paper in press).
  • [19] Zhang, J., Zhang, F., Luo, Y., Yang, H. A. (2006). Ppreliminary study on cactus as coagulant in water treatment. Process Biochemistry, 41(3), 730-733.
  • [20] Chiang, P.C., Chang, E.E., Liang, C.H. (2002). NOM characteristics and treatabilities of ozonation processes. Chemosphere, 46(6), 929-935.
  • [21] Edzwald, J.K., Van Benschoten, J.E. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63-70.
  • [22] Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., Lechevallier, M. (2000). Impact of enhanced and optimised coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research, 34(12), 3247-3257.
  • [23] Mołczan, M., Szlachta, M., Karpińska, A., Biłyk, A. (2006). Zastosowanie absorbancji właściwej w nadfiolecie (SUVA) w ocenie jakości wody (Water Quality Assessment in Terms of Specific UV Absorbance). Ochrona Środowiska, 28(4), 11-16.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d2614eed-a221-47ed-9b67-919bf2dd0795
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.