Warianty tytułu
Ocena charakterystyki energetycznej procesu suszenia podczerwienią nasion rzepaku i soi przy użyciu wirnika wibracyjnego
Języki publikacji
Abstrakty
The developed thermal radiation dryer with a vibrating wave method of generating oscillations allows you to realize the positive features of the flow form of the processing organization, the level of influence of high thermal loads on the surface layer of products, the high rate of moisture removal deep into the product in conditions of ensuring its fluidized state. Under such conditions, energy-saving and uniform processing of the mass of technological loading is realized. The loosening of the mass of products under the influence of signs of variable loads to the reduction of internal friction and viscosity in the technological environment, which allows to maximize heat transfer coefficients. The implementation of the process of mixing loose particles of products during their transportation in the working area with a vibrating wave driver ensures constant renewal of the surface layer, layer-by-layer uniform heat treatment, which eliminates its overheating and sufficiently effective energy saturation under the action of high-energy infrared radiation. The vibration-wave method of creating a fluidized layer allows to soften the contact interaction with infrared rays in a certain way. In the developed vibro-wave thermoradiation dryer, vibration not only reduces the forces of internal friction during transportation, but also forms a dynamic wave to ensure the forced movement of material along a flexible load-carrying body under the conditions of continuous renewal of product layers during their mixing. Based on the results of the research, it was substantiated that the most effective were the speeds of product advancement in the range from 0.15 to 0.3 cm/s, the rational values of the power of infrared radiation were 400–500 W, and the specific loading of the conveyor belt was expedient to use up to 3.5 kg/m2
Opracowana suszarka cieplna z metodą fali wibracyjnej generującej oscylacje pozwala uświadomić sobie pozytywne cechy kształtu przepływu organizacji przetwarzającej, poziom wpływu dużych obciążeń termicznych na wierzchnią warstwę produktów, wysoką szybkość usuwania wilgoci w głąb produktu w warunkach zapewniających jego stan upłynniony. W takich warunkach realizowane jest energooszczędne i równomierne przetwarzanie masy wsadu technologicznego. Rozluźnienie masy wyrobów pod wpływem oznak zmiennych obciążeń w celu zmniejszenia tarcia wewnętrznego i lepkości w środowisku technologicznym, co pozwala maksymalizować współczynniki przenikania ciepła. Realizacja procesu mieszania sypkich cząstek produktów podczas ich transportu w obszarze roboczym za pomocą wibratora falowego zapewnia ciągłą odnowę warstwy wierzchniej, równomierną obróbkę cieplną warstwa po warstwie, co eliminuje jej przegrzanie i wystarczająco efektywne nasycenie energią pod wpływem działanie wysokoenergetycznego promieniowania podczerwonego. Metoda wibracyjno-falowa tworzenia warstwy fluidalnej pozwala w pewien sposób złagodzić oddziaływanie kontaktowe z promieniami podczerwonymi. W opracowanej suszarce termoradiacyjnej wibracyjnej wibracje nie tylko zmniejszają siły tarcia wewnętrznego podczas transportu, ale także tworzą falę dynamiczną, która zapewnia wymuszony ruch materiału wzdłuż elastycznego korpusu nośnego w warunkach ciągłej wymiany warstw produktu podczas ich mieszania. Na podstawie wyników badań stwierdzono, że najskuteczniejsze były prędkości przesuwania produktu w zakresie od 0,15 do 0,3 cm/s, racjonalne wartości mocy promieniowania podczerwonego wynosiły 400–500 W, a właściwa celowe było obciążenie przenośnika taśmowego do 3,5 kg/m2 .
Słowa kluczowe
Rocznik
Tom
Strony
42--46
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, vibroprocessing@gmail.com
autor
- Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Vinnytsia, Ukraine, kupc1989@gmail.com
autor
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine, jeplinska@ukr.net
Bibliografia
- [1] Afzal T.M., Abe T., Hikida Y.: Energy and quality aspects during combined FIR convection drying of barley. Food Eng. 42, 1999, 177–182.
- [2] Bahlul N. et al.: Coupling of Microwave Radiations to Convective Drying for Improving Fruit Quality. 21st International Drying Symposium, 2018, 699.
- [3] Bandura V., Zozuliak I., Palamarchuk V.: Description of heat exchange in the similarity theory of vibrating drying process of sunflower. Ukrainian Journal of Food Science 2(2), 2014, 305–311.
- [4] Bandura V., Palamarchuk V.: Development of constructive and technological measures to increase the efficiency of infrared drying of energy-rich vegetable raw materials. IV International Scientific and Practical Conference "Land of Ukraine – the potential of economic and environmental security of the state", Vinnytsia, 2014, 24–27.
- [5] Bandura V., Tsurkan O., Palamarchuk V.: Experimental study of the technological parameters of the process of infrared drying of the technological parameters of the process of infrared drying of the moving layer of the raw material of oilseed crops. MOTROL. Commission of Motorization and Energetics in Agriculture 17(4), 2015, 211–214.
- [6] Bezbakh, I., Bakhmutyan, N.: Research on the process of drying fruits and berries in a suspended layer. Scientific works of ONAKHT, Odesa 28(2), 2006, 112–116.
- [7] Burdo O. H.: Energy monitoring of food production. Polygraph, Odessa 2008.
- [8] Derevenko V.: The main technological regularities of heat treatment of oily material for oil extraction. The Russian School of Problems of Science and Technology dedicated to the 80th anniversary of the birth of Academician V. P. Makeeva, Miass, 2004, 144–146.
- [9] Didur V., Tkachenkom O.: Justification of the modes of drying sunflower seeds of higher reproductions in a fluidized bed. Pr. TDATA 25, 2005.
- [10] Drukovany M. et al.: Improvement of thermal technology in the production of oil and biodiesel fuel: monograph. Vinnytsia 2014.
- [11] Jayas D. S., Ghosh P. K.: Preserving quality during grain drying and techniques for measuring grain quality. Department of Biosystems Engineering, E2-376 Engineering and Information Technology Complex, University of Manitoba 2006, 969–980.
- [12] Kotov B. I., Kyfyak V. V.: Identification of dynamic modes of heating and drying of grain products by IR radiation. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine. Series: Technology and energy of agricultural industry 194(2), 2014, 165–170.
- [13] Palamarchuk I. et al.: Physical-mathematical modeling of the process of infrared drying of rape with vibration transport of products. Mechatronic Systems 1, 2021, 243–253 [https://doi.org/10.1201/9781003224136-21].
- [14] Palamarchuk I. et al.: An analysis of power and energy parameters of the conveyor infrared dryer of oil-containing raw materials. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska – IAPGOS 13(2), 2023, 10–14 [https://doi.org/10.35784/iapgos.3487].
- [15] Palamarchuk I., Bandura V., Palamarchuk V.: Justification of the structural and technological scheme of the conveyor vibrating dryer. Vibrations in engineering and technologies 2(66), 2012, 116–125.
- [16] Palamarchuk, I., Bandura, V., Palamarchuk, V.: Analysis of the dynamics of a vibrating conveyor technological system with kinematic combined vibration excitation. MOTROL. Commission of Motorization and Energetics in Agriculture 4(15), 2013, 314–323.
- [17] Palamarchuk I., Bandura V., Palamarchuk V.: Vibrating conveyor dryer with infrared emitters: patent of Ukraine No. 87767; statement 28.02.2013; published 25.02.2014, Bull. No. 4, 4.
- [18] Palamarchuk I., Bandura V., Palamarchuk V.: Selection of the type of mechanical drive for a conveyor vibrating dryer with flexible working and transporting bodies. Materials of the IV international scientific and practical conference "Innovative energy technologies", Odesa, 2016, 27–30.
- [19] Palamarchuk I., Tsurkan O., Palamarchuk V.: Justification of the structural and technological scheme of the infrared vibrating conveyor dryer for postharvest processing of loose agricultural products. Collection of scientific works of the Vinnytsia National Agrarian University. Series: Technical sciences 1(89), 2015, 117–123.
- [20] Snezhkin Yu. F.: Ways of intensification of drying processes. Industrial heat engineering 31(7), 2009, 89–90.
- [21] Sorochinsky V. F.: Efficiency of grain drying on grain dryers of various types. Bread products 3(4), 2009, 42–43.
- [22] Sorochinsky V. F.: Estimation of the homogeneity of the fluidized bed of grain by changes in the local heat flux density on the vertical surface of the heat exchange. SETT-2002, 2, 72–75.
- [23] Vasyliv V. et al.: Method of Electrohydraulic Activation of Water-Lime Suspension in Sugar Production. Tonkonogyi V. et al. (eds): Advanced Manufacturing Processes III. InterPartner 2021. 2022.
- [24] Wei Q. et al.: Effects of Different Combined Drying Methods on Drying Uniformity and Quality of Dried Taro Slices. Drying Technology 37(3), 2019, 322–330 [https://doi.org/10.1080/07373937.2018.1445639].
- [25] Zheplinska M., Mushtruk M., Salavor O.: Cavitational Impact on Electrical Conductivity in the Beet Processing Industry. Tonkonogyi V. et al. (eds) Advanced Manufacturing Processes II. InterPartner 2020. 2021.
- [26] Zheplinska M. et al.: Exploration of drying process of beets. Journal of Hygienic Engineering and Design 42, 2023, 315–320.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d240d9d5-ba31-48b4-9dba-783a026ddb08