Czasopismo
2016
|
Vol. 23, no. 4
|
191--204
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an approach to optimize the structure of a micro-drill for reducing its lateral vibration,which has a strong effect on the quality of drilled holes during the cutting process. The micro-drill and thespindle of a micro-drilling spindle system are modeled as Timoshenko’s beam elements. Each element withfive degrees of freedom at each node comprehensively includes the effects of continuous mass eccentricity,shear deformation, gyroscopic moments, rotational inertia with external thrust force and torque, andcoupling torsional and lateral effect. The finite element method is used to determine the lateral amplituderesponse at the micro-drill point, which is considering the objective function during the optimizationof the micro-drill by the interior-point approach. The diameters and the lengths of drill segments arechosen as the design variables with nonlinear constraints in the constant mass, mass center location, andtorsional deformation of the drill. The in-house finite element code-integrated optimization environmentis implemented in MATLAB to solve the optimal problem. The results showed that compared with theoriginal micro-drill, the lateral amplitude response at the drill point of the optimal one is reduced by 91.89% at an operating speed of 50 000 rounds per minute (r/min), and its first critical speed and thecorresponding amplitude response exceed those of the original one.
Rocznik
Tom
Strony
191--204
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of International Training, Thai Nguyen University of TechnologyVietnam, hoangdat@tnut.edu.vn
autor
- Department of Mechanical Engineering, National Chiao Tung UniversityTaiwan, R.O.C
Bibliografia
- [1] J. Agapiou, E. Rivin, C. Xie. Toolholder/spindle interfaces for CNC machine tools. CIRP Annals – Manufacturing Technology, 44(1): 383–387, 1995.
- [2] M.A. Alfares, A.A. Elsharkawy. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. J. Mater. Process. Technol., 136(1): 48–59, 2003.
- [3] J.R. Baker, K.E. Rouch. Use of finite element structural models in analyzing machine tool chatter. Finite Elem. Anal. Des., 38(11): 1029–1046, 2002.
- [4] B.K. Choi, B.S. Yang. Multiobjective optimum design of rotor-bearing systems with dynamic constraints using immune-genetic algorithm. J. Eng. for Gas Turbines and Power,123(1): 78–81, 2001.
- [5] B.G. Choi, B.S. Yang. Optimum shape design of rotor shafts using genetic algorithm. J. Vib. Control, 6(2):207–222, 2000.
- [6] R.P.H. Faassen, N. Van de Wouw, J.A.J. Oosterling, H. Nijmeijer. Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int. J. Mach. Tools Manuf., 43(14): 1437–1446, 2003.
- [7] V. Gagnol, B.C. Bouzgarrou, P. Ray, C. Barra. Stability-based spindle design optimization. J. Manuf. Sci. Eng., 129(2): 407–415, 2007.
- [8] I. Griva, S. Nash, A. Sofer. Linear and Nonlinear Optimization. The Society for Industrial and Applied Mathematics, Siam, Philadelphia, 2009.
- [9] M.Y. He, M. Kiemb, A.L. Tits, A. Greenfield, V. Sahasrabudhe. Constraint-reduced interior-point optimization for model predictive rotorcraft control. American Control Conference, 2088–2094, IEEE, 2010.
- [10] Y.H. Kim, A. Tan, B.S. Yang, W.C. Kim, B.K. Choi, Y.S. An. Optimum shape design of rotating shaft by ESO method. J. Mech. Sci. and Tech., 21(7): 1039–1047, 2007.
- [11] A.C. Lee, C.S. Liu. Analysis of chatter vibration in the end milling process. Int. J. Mach. Tools Manuf., 31(4):471–479, 1991.
- [12] A.C. Lee, C.S. Liu, S.T. Chiang. Analysis of chatter vibration in a cutter-workpiece system. Int. J. Mach. ToolsManuf., 31(2): 221–234, 1991.
- [13] A.C. Lee, T.D. Hoang. Coupled lateral and torsional vibrations of the micro-drilling spindle systems. Int. J. Adv. Manuf. Technol., 87(5): 2063–2079, 2016.
- [14] N. Olgac, M. Hosek. A new perspective and analysis for regenerative machine tool chatter. Int. J. Mach. ToolsManuf., 38(7): 783–798, 1998.
- [15] A.O. Pugachev. Application of gradient-based optimization methods for a rotor system with static stress, natural frequency, and harmonic response constraints. Struct. Multidiscip. Optim., 47(6): 951–962, 2013.
- [16] P. Pardalos, J.R. Birge, D.Z. Du, C.A. Floudas, J. Mockus, H.D. Sherali, G. Stavroulakis. Nonconvex Optimization and Its Applications, Springer, 1994.
- [17] S.S. Rao, E.L. Mulkay. Engineering design optimization using interior-point algorithms. AIAAJ, 38(11): 2127–2132, 2000.
- [18] S. Smith, T.P. Jacobs, J. Halley. The effects of drawbar force on metal removal rate in milling. CIRP Ann,Technol., 48(1): 293–296, 1999.
- [19] Y.C. Shin. Bearing nonlinearity and stability analysis in high speed machining. J. Eng. Ind. ASME, 114(1):23–30, 1992.
- [20] H. Saruhan. Optimum design of rotor-bearing system stability performance comparing an evolutionary algorithm versus a conventional method. Int. J. Mech. Sci., 48(12): 1341–1351, 2006.
- [21] W.R. Wang, C.N. Chang. Dynamic analysis and design of a machine tool spindle-bearing system. J. Vib. Acoust., 116(3): 280–285, 1994.
- [22] B.S. Yang, S.P. Choi, Y.C. Kim. Vibration reduction optimum design of a steam-turbine rotor-bearing system using a hybrid genetic algorithm. Struct. Multidiscip. Optim., 30(1): 43–53, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d1dd4c08-e586-4833-8c2a-9f099db3f478