Warianty tytułu
Modernizacja napięcia sieci dystrybucji energii w mieście Basra z 11 kV do 33 kV
Języki publikacji
Abstrakty
Among the plans of Ministry of Electricity MOE in Iraq to evolve the power distribution sector is to replace the conventional 33/11/0.416 kV system by a new 33/0.416 kV system. The main reasons for that are the huge increase in demand for electricity especially in city center where the demand is increasing vertically for the same geographical area, and the lack of available locations to install additional 33/11 kV substations. This work presents the design of distribution network with proposed 33/0.416 kV system for reliable power supply with better voltage profile, improved power factor, lower losses, and lower cost. The method involves local zoning of area, calculating total load, computing total number, size, and location of distribution transformers, and calculating length and size of cables.The 33 kV intermediate station in the proposed system require a land area about 66% less than the area required for the installation of the conventional 33/11 kV substation. This allows installing the 33 kV intermediate stations in locations that provides the best result from the technical point of view. The line loading about 3 times increase when upgrade the operating voltage to 33kV and can be meet the increase load demand in future without needs to install new substation and new distribution feeders. The GIS software is used to locate the distribution transformers and lying of the underground cables. CYME software is used to simulate the electric distribution system and conduct the load flow and other analyses.
Wśród planów Ministerstwa Energii Elektrycznej MOE w Iraku dotyczących rozwoju sektora dystrybucji energii jest zastąpienie konwencjonalnego systemu 33/11/0,416 kV nowym systemem 33/0,416 kV. Głównym tego powodem jest ogromny wzrost zapotrzebowania na energię elektryczną, zwłaszcza w centrum miasta, gdzie popyt rośnie w pionie dla tego samego obszaru geograficznego oraz brak dostępnych lokalizacji do zainstalowania dodatkowych stacji 33/11 kV. W pracy przedstawiono projekt sieci dystrybucyjnej z proponowanym systemem 33/0,416 kV zapewniającym niezawodne zasilanie o lepszym profilu napięciowym, lepszym współczynniku mocy, niższych stratach i niższych kosztach. Metoda obejmuje lokalne strefowanie obszaru, obliczanie całkowitego obciążenia, obliczanie całkowitej liczby, rozmiaru i lokalizacji transformatorów rozdzielczych oraz obliczanie długości i rozmiaru kabli. Stacja pośrednia 33 kV w proponowanym systemie wymaga powierzchni lądowej o około 66% mniejszej niż powierzchnia wymagana do zainstalowania konwencjonalnej podstacji 33/11 kV. Pozwala to na zainstalowanie stacji pośrednich 33 kV w lokalizacjach zapewniających najlepszy wynik z technicznego punktu widzenia. Obciążenie linii wzrasta około 3 razy po podniesieniu napięcia roboczego do 33kV i może w przyszłości zaspokoić rosnące zapotrzebowanie na obciążenie bez konieczności instalowania nowej podstacji i nowych linii dystrybucyjnych. Oprogramowanie GIS służy do lokalizacji transformatorów rozdzielczych i układania kabli podziemnych. Oprogramowanie CYME służy do symulacji systemu dystrybucji energii elektrycznej i przeprowadzania przepływu obciążenia oraz innych analiz.
Czasopismo
Rocznik
Tom
Strony
88--95
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Ministry of Electricity, Iraq, eee.20.39@grad.uotechnology.edu.iq
autor
- University of Technology, Iraq, 30043@uotechnology.edu.iq
Bibliografia
- [1] E. L. and E. J. Holmes, Electricity; Network Design; Distribution, 2nd Editio. The Institution of Engineering and Technology, 2007. 2nd Edition.
- [2] R. H. Al-rubaiei, D. Mahmood, and M. M. Al-khuzaei, “A Dvances Thermal Limit Reduction and Power Quality Improvement Adopting Microgrid Strategy on the Distributed Network : Iraq as a Case Study,” Advances in Natural and Applied Sciences,Vol. 10, No. 13, pp. 229–233, 2016.
- [3] A. H. Mohammed and S. I. Shahl, “Impact of Distributed Generation on a Distribution Network Voltage Sags in Baghdad City,” Engineering and Technology Journal, Vol. 39, No. 4A, pp. 528–542, 2021.
- [4] A. Mashal, R. AL-Rubayi, and M. Abd, “Optimum Simultaneous Distributed Generation Units Insertion and Distribution NetworkReconfiguration Using Salp Swarm Algorithm,” Engineering and Technology Journal, Vol. 38, No. 11. pp. 1730–1743, 2020.
- [5] S. H. Dolatabadi, M. Ghorbanian, P. Siano, and N. D. Hatziargyriou, “An Enhanced IEEE 33 Bus Benchmark Test System for Distribution System Studies,” IEEE Transactions on Power Systems, Vol. 36, No. 3, pp. 2565–2572, 2021.
- [6] O. D. Montoya, W. Gil-González, and C. Orozco-Henao, “Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach,” Engineering Science and Technology, an International Journal, Vol. 23, No. 6, pp. 1351–1363, 2020.
- [7] A. Anwar and A. Kadhim, “Optimal Allocation of Capacitor for Iraqi Distribution Network using FLC-PSO Controller,” International Journal of Computer Applications, Vol. 143, No. 3, pp. 39–46, 2016.
- [8] M. J. Tahir, B. A. Bakar, M. M. Alam, and M. S. U. Mazlihum, “Optimal capacitor placement in a distribution system using ETAP software,” Indonesian Journal of Electrical Engineering and Computer Science, Vol. 15, No. 2. pp. 650–660, 2019.
- [9] A. L. Lowell, “Load flow analysis of radial distribution network using linear data structure,” Rajasthan Technical University, Kota ,Vol. 83, No. 6, p. 824, October, 2013.
- [10] I.I.Ali, “Optimal capacitor placement to reduce active power losses and harmonic in unbalance distribution system,” al-qadisiya journal for engenering sciences Vo.10, 2017,No 3 pp.274-290, 2017.
- [11] A. K. Hamza and M. F. Bonneya, “Step Voltage Regulator andCapacitor Placement to Improve the Performance of Rural Electrical Distribution Systems by CYME Program,” Materials Science and Engineering, IOP, Vol. 518, No. 4, 2019.
- [12] W. K. S. Al-Jubori and A. N. Hussain, “Optimum reactive power compensation for distribution system using dolphin algorithm considering different load models,” International Journal of Electrical and Computer Engineering, Vol. 10, No. 5. pp. 5032–5047, 2020.
- [13] M. Ali, F. Rashid, and S. Rasheed, “Power factor improvement for a three-phase system using reactive power compensation,” Indonesian Journal of Electrical Engineering and Computer Science, Vol. 24, No. 2, pp. 715–727, 2021.
- [14] Y. Gebru, D. Bitew, H. Aberie, and K. Gizaw, “Performance enhancement of radial distribution system using simultaneous network reconfiguration and switched capacitor bank placement,”Cogent Engineering, Vol. 8, No. 1, 2021.
- [15] I. K. Saeed and K. Sheikhyounis, “Power quality improvement of distribution systems asymmetry caused by power disturbances based on particle swarm optimization-artificial neural network,” Indonesian Journal of Electrical Engineering and Computer Science, Vol. 25, No. 2. Indonesian Journal of Electrical Engineering and Computer Science, pp. 666–679, 2022.
- [16] S. S. Myat, W. K. Myint, and E. E. Phyu, “Comparison for Loss and Cost Reduction in Power System Distribution by Utilization of Larger Conductor Size and Voltage Upgrading,” International Journal of Science and Engineering Applications, Vol. 7, No. 11, pp. 459–464, 2018.
- [17] K. Nithiyananthan, Umasankar, “Environment Friendly Voltage Up gradation Model for Distribution Power Systems,”, International Journal of Electrical and Computer Engineering, Vol. 6, No. 6, pp. 2516~2525 December 2016.
- [18] M. Abdul-Wahhab and O. A. Abdullah, “Simulation and Contingency Analysis of a Distributed Network in Iraq,” Journal of Engineering and Sustainable Development, Vol. 20, No. 04, pp. 238–263, 2016.
- [19] Z. Dawood and R. AL-Rubayi, “Analysis of Distribution System Reconfiguration under Different Load Demand in AL-KUT City by using PSO Algorithm,” Engineering and Technology Journal, Vol. 39, No. 5A, pp. 738–753, 2021.
- [20] C. Dorji, S. Khawash, C. Lhamo, and N. Drukchen, “GIS Approach to Distribution Network of Phuentsholing Town,” Proceedings - 2015 International Conference on Computational Intelligence andCommunication Networks GIS, CICN 2015. 015, pp. 1515–1519, 2016.
- [21] P. Dixit, “Optimum Routing of Distribution System Network Using GIS and Remote Sensing Technology,” Fifteenth National Power Systems Conference No. December. pp. 148–153, 2008.
- [22] E. Stephen, 2dare-Alao Damilola, and O. E. Stephen, “Geospatial Modeling of Electricity Distribution Network in Ife Central Local Government Area, Osun State, Nigeria,” Science Journal of Environmental Engineering Research, Vol. 2014,ISSN:2276-7495) ,2014.
- [23] K. P. Wangden, K. Choden, and K. Tshering, “Design of electrical distribution system of pekarzhing area ,” International Journal of Scientific Research and Engineering Development,Vol. 3, Issue 4, pp. 1426–1430, 2020.
- [24] A. M. Adua ,A. L. Bukar, D. M. Garba “Design of an electrical distribution network within damaturu.” Volume 7, Issue 2, pp. 1484-1493 February-2016.
- [25] G. H. – S. A. S. Engineer and Reviewed Stewart Collins Robert Smith, “Distribution Design and Construction Standard.” This document is the responsibility of the Asset Strategy Team, Tasmanian Networks Pty Ltd, ABN 24 167 357 299 (hereafter referred to as “TasNetworks”), Version: 4.0, doi: © Tasmanian Networks Pty Ltd 2021.
- [26] M. Sarwar, Z. A. Jaffery, A. S. Siddiqui, and I. A. Quadri, “Techno economic feasibility of HVDS concept for distribution feeder power loss minimisation,” Power Electronics (IICPE), 2012 IEEE 5th India International Conference , No. December, 2012, doi: 10.1109/IICPE.2012.6450376.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d1dc54ba-191e-4a2d-a0d7-922ed1366c14