Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | R. 89, nr 5 | 30-35
Tytuł artykułu

Optimal Placement of Traveling Wave Fault Location Equipment in Power Grid Based on Characteristic Non-singular Set

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Optymalizacja rozmieszczenia czujników wykrywania fali wędrującej przy awarii w sieci elektroenergetycznej na podstawie niesingularnego ułożenia wartości własnych
Języki publikacji
EN
Abstrakty
EN
With the widely use of traveling wave fault location equipment (TWFLE) in power grid, network-based traveling wave fault location (NBTWFL) method has been proposed. To ensure the effectiveness and economy of NBTWFL method, based on the principle of characteristic nonsingular set, an optimal placement algorithm of TWFLE is proposed in this paper. The corresponding NBTWFL method based on maximum nonsingular subset, additional installation plan of TWFLE and some other related problems are also discussed in this paper.
PL
W artykule opisano metodą wykrywania awarii w sieci elektroenergetycznej na podstawie analizy fali wędrującej. Proponowane rozwiązanie bazuje na klasycznym algorytmie wykrywania fali wędrującej, w którym zastosowano niesingularne wartości własne. Pozwoliło to na optymalizację rozmieszczenia urządzeń do wykrywania awarii.
Wydawca

Rocznik
Strony
30-35
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), tangjinrui@hust.edu.cn
  • Electric Power Security and High Efficiency Laboratory (Huzhong University of Science and Technology)
autor
  • Electric Power Security and High Efficiency Laboratory (Huzhong University of Science and Technology), xgyin@mail.hust.edu.cn
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology)
autor
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), zz_mail2002@163.com
  • Electric Power Security and High Efficiency Laboratory (Huzhong University of Science and Technology)
autor
  • Electric Power Security and High Efficiency Laboratory (Huzhong University of Science and Technology), 814512663@qq.com
  • State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology)
Bibliografia
  • [1] Lee H, Mousa A M, GPS traveling wave fault locator system s: investigation into the anomalous measurements related to lightning strikes, IEEE Trans. On Power Delivery, 11(1996), No.3, 1214-1223.
  • [2] Xinzhou D, Yaozhong G, Bingyin X, Research of fault location based on current traveling waves, Proceedings of the CSEE, 19(1999), No. 4, 76-80.
  • [3] Xiangjun Z, Xianggen Y, Fuchang L, et al, Study on fault location for transmission lines based on the sensor of travelingwave, Proceedings of the CSEE, 22(2002), No. 6, 42-46.
  • [4] Siozinys, V, Transmission line fault distance measurement based on time difference between traveling wave reflection and refraction, ELEKTRONIKA IR ELEKTROTECHNIKA, 98(2010), No.2, 25-28.
  • [5] Bernadic A, Leonowicz Z, Power line fault location using the Complex Space-Phasor and Hilbert-Huang Transform, PRZEGLAD ELEKTROTECHNICZNY, 87(2011), No. 5, 204-207.
  • [6] Liu YD, Sheng GH, He ZM, et al, A traveling wave fault location method for earth faults based on mode propagation time delays of multi-measuring points, PRZEGLAD ELEKTROTECHNICZNY, 88(2012), No. 3A, 254-258.
  • [7] Tayebi SM, Kazemi A, Rezaeipour R, A fault direction discrimination scheme based on transients generated by faults in multi-branch power systems, International Review of Electrical Engineering, 7(2012), No. 1, 3586-3591.
  • [8] Lin XN, Zhao F, Wu G, et al, Universal wavefront positioning correction method on traveling-wave-based fault-location algorithms, IEEE Tans. On Power Delivery, 27(2012), No. 3, 1601-1610.
  • [9] Huang Q, Zhen W, Pong PWT, A novel approach for fault location of overhead transmission line with noncontact magnetic-field measurement, IEEE Trans. On Power Delivery, 27(2012), No. 3, 1186-1195.
  • [10] Lin S, He ZY, Li XP, et al, Traveling wave time-frequency characteristic-based fault location method for transmission lines, IET Generation Transmission & Distribution, 6(2012), No. 8, 764-772.
  • [11] Tabatabaei A, Mosavi MR, Rahmati A, Fault location techniques in power system based on traveling wave using wavelet analysis and GPS timing, PRZEGLAD ELEKTROTECHNICZNY, 88(2012), No. 6, 347-350.
  • [12] Mardiana R, Al Motairy H, Su CQ, Ground fault location on a transmission line using high-frequency transient voltages, IEEE Trans. On Power Delivery, 26(2011), No. 2, 1298-1299.
  • [13] Jian Q, Xiangxun C, Jianchao Zheng, Study on dispersion of traveling wave in transmission line, Proceedings of the CSEE, 19(1999), No. 9, 27-31.
  • [14] Xiangjun Z, Nan C, Zewen L, et al, Network-based algorithm for fault location with traveling wave, Proceedings of the CSEE, 28(2008), No. 31, 48-53.
  • [15] Lin D, Hongye C, Weigen C, et al, Network path based algorithm for regional power grid fault locating with traveling wave, Automation of Electric Power Systems, 34(2010), No. 24, 60-64.
  • [16] Zewen L, Jiangang Y, Xiangjun Z, et al, Power grid fault traveling wave network protection scheme, International Journal of Electrical Power and Energy Systems, 33(2011), No. 4, 875-879.
  • [17] Zewen L, Jianggang Y, Xiangjun Z, et al, Optimal placement of traveling wave fault location equipment for power grid, Automation of Electric Power Systems, 33(2009), No. 3, 64-68.
  • [18] Feng D, Nan C, Xiangjun Z, et al, An optimal configuration algorithm for traveling wave fault location equipments in power grid based on graph theory, Automation of Electric Power Systems, 34(2010), No. 11, 87-92.
  • [19] Xuyong H, Wenhui Z. Pei L, Optimal placement of traveling wave fault locating equipment and its improved algorithm, Electric Power Automation Equipment, 30(2010), No. 1, 41-44.
  • [20] Douglas B. West, Introduction to graph theory, 3rd edition, published by Prentice Hall, 2007.
  • [21] Gunkel C, Stepper A, Muller AC, et al, Micro crack detection with Dijkstra's shortest path algorithm, Machine Vision And Applications, 23(2012), No. 3, 589-601.
  • [22] Hofner P, Moller B, Dijkstra, Floyd and Warshall meet Kleene, Formal Aspects Of Computing, 24(2012), No. 4-6, 459-476.
  • [23] Zumberge JF, Heflin MB, Jefferson DC, et al, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research-solid Earth, 102(1997), No. B3, 5005-5017.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d17ff1a8-1ae3-4987-a983-cb58e14d46cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.