Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 70, nr 3 | 325--341
Tytuł artykułu

Effect of polypropylene fibres on the shear strength of fine-grained soil

Treść / Zawartość
Warianty tytułu
PL
Wpływ włókien propylenowych na wytrzymałość na ścinanie gruntu drobnoziarnistego
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of shear strength tests of fine-grained soil reinforced by randomly oriented fibres. The tests were carried out in a direct shear apparatus on samples with a diameter of 100 mm and a height of 20 mm. The samples were formed directly in the apparatus box at a natural moisture content and two values of the degree of compaction (IS = 0:79 and 0.90). The studies were carried out for samples of natural moisture content and for soaked ones. The two types of polypropylene fibres were used: monofilament and fibrillated (of traded names Fibermesh 300-e3 and SikaCem Fiber-12, respectively). The fibre content was 0.25; 0.50 and 1.00% by the weight of the dry soil. The results showed that the presence of fibre within the soil increased its the shear strength. The improvement of the shear strength was related to the type of reinforcement, its content and the soil parameters. The maximum increase in shear strength was 47% compared to the shear strength of the unreinforced soil. The increase in shear strength values were related mainly to the increase in the angle of internal friction of the soil. It was found that as the degree of compaction of the soil increases, the higher enhance of the shear strength of reinforced soil occurs. It was also found that the improvement of shear strength of reinforced soaked samples was more significant than for un-soaked ones.
PL
W pracy przedstawiono wyniki badań wytrzymałości na gruntu drobnoziarnistego z dodatkiem zbrojenia rozproszonego. Oznaczenie parametrów wytrzymałości na ścinanie przeprowadzono w aparacie bezpośredniego ścinania na próbkach o średnicy 100 mm i wysokości 20 mm. Próbki były formowane bezpośrednio w skrzynce aparatu przy wilgotności naturalnej, zbliżonej do optymalnej, oraz dwóch wartościach wskaźnika zagęszczenia (IS = 0,79 i 0,90). Próbki konsolidowano przez 60 min przy naprężeniu normalnym 25, 50, 75, 100, 125 kPa, a następnie ścinano z prędkością 0,10 mm·min-1 do momentu uzyskania 18% względnego odkształcenia. Badania przeprowadzono dla zawodnionych niezawodnieniem próbek gruntu. Zbrojenie rozproszone stanowiły dwa rodzaje włókien polipropylenowych (monofilamentowe i fibrylowane o nazwach handlowych odpowiednio Fibermesh 300-e3 oraz SicaCem Fiber-12), które dodawano w ilości 0,25; 0,50 i 1,00% w stosunku do masy szkieletu gruntu. Wyniki badań wykazały, że zastosowanie zbrojenia rozproszonego wpływa pozytywnie na wytrzymałość na ścinanie gruntu, przy czym wpływ ten jest zależny od rodzaju zbrojenia, jego dodatku, a także parametrów geotechnicznych gruntu. Maksymalny wzrost wytrzymałości na ścinanie gruntu ze zbrojeniem wyniósł 47% w stosunku do wartości wytrzymałości na ścinanie gruntu bez dodatku zbrojenia. Stwierdzono, że dodatek zbrojenia wpłynął zasadniczo na wartości kąta tarcia wewnętrznego, a w przypadku spójności był niejednoznaczny. Wyniki badań wykazany również, że włókna monofilamentowe mają bardziej korzystny wpływ na wzmocnienie gruntu niż włókna fibrylowane. Wykazano również, że wpływ zbrojenia na wzmocnienie gruntu jest bardziej efektywny przy wyższym wskaźniku zagęszczenia gruntu, a większy przyrost wytrzymałości na ścinanie gruntu uzyskano w przypadku badań próbek zawodnionych.
Wydawca

Rocznik
Strony
325--341
Opis fizyczny
Bibliogr. 54 poz., il., tab.
Twórcy
Bibliografia
  • [1] G.H. Garry, “Sustainability aspects of the fiber-reinforced soil repair of a roadway embankment”, Geosynthetics, vol. 29, no. 4, pp. 18-22, 2011.
  • [2] M. Winter, I. Nettleton, R. Seddon, and J. Codd, “The Assessment of Innovative Geotechnical Slope Repair Techniques”, Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, pp. 1-33, 2022, doi: 10.1680/jgeen.22.00143.
  • [3] R. Noorzad and S.T.G. Zarinkolaei, “Comparison of Mechanical Properties of Fiber-Reinforced Sand under Triaxial Compression and Direct Shear”, Open Geosciences, vol. 7, no. 1, pp. 547-558, 2015, doi: 10.1515/geo-2015-0041.
  • [4] D. Muir Wood, A. Diambra, and E. Ibraim, “Fibres and soils: A route towards modelling of root-soil systems”, Soils and Foundations, 2016, vol. 56, no. 5, pp. 765-778, 2016, doi: 10.1016/j.sandf.2016.08.003.
  • [5] M.H. Maher and D.H. Gray, “Static response of sand reinforced with randomly distributed fibers”, Journal of Geotechnical Engineering, vol. 116, no. 11, pp. 1661-1677, 1990, doi: 10.1061/(ASCE)0733-9410(1990)116:11(1661).
  • [6] T.H. Wu, Investigation of Landslides on Prince of Wales Island, Alaska. Geotechnical Engineering Report no. 5. Department of Civil Engineering, Ohio State Univ. Columbus, 1976.
  • [7] L.J.Waldron, “Shear resistance of root-permeated homogeneous and stratified soil”, Soil Science Society America Journal, vol. 41, no. 5, pp. 843-849, 1977, doi: 10.2136/sssaj1977.03615995004100050005x.
  • [8] D.H. Gray and H. Ohashi, “Mechanics of fiber reinforcement in sand”, Journal of Geotechnical Engineering, vol. 109, no. 3, pp. 335-353, 1983, doi: 10.1061/(ASCE)0733-9410(1983)109:3(335).
  • [9] R.L. Michalowski and A. Zhao, “Failure of fiberreinforced granular soils”, Journal of Geotechnical Engineering, vol. 122, no. 3, pp. 226-234, 1996, doi: 10.1061/(ASCE)0733-9410(1996)122:3(226).
  • [10] R.L. Michalowski, “Limit stress for granular composites reinforced with continuous filaments”, Journal of Engineering Mechanics, vol. 123, no. 8, pp. 852-859, 1997, doi: 10.1061/(ASCE)0733-9399(1997)123:8(852).
  • [11] R.L. Michalowski and J. Cermak, “Triaxial compression of sand reinforced with fibers”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 2, pp. 125-136, 2003, doi: 10.1061/(ASCE)1090-0241(2003)129:2(125).
  • [12] J.J. Murray, J.D. Frost , and Y. Wang, “Behavior of a Sandy Silt Reinforced with Discontinuous Recycled Fiber. Inclusions”, Transportation Research Record, vol. 1714, no. 1, pp. 9-17, 2000, doi: 10.3141/1714-02.
  • [13] M.D.T. Casagrande, M.R. Coop, and N.C. Consoli, “Behavior of a fiber-reinforced bentonite at large shear displacements”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 11, pp. 1505-1508, 2006, doi: 10.1061/(ASCE)1090-0241(2006)132:11(1505).
  • [14] M.D.T. Casagrande, M.R. Coop, and N.C. Consoli, “Behavior of a fiber-reinforced bentonite at large shear displacements (Discussion closure paper)”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, no. 12, pp. 1635-1636, 2007.
  • [15] I.M.C.F.G. Falorca, M.I.M. Pinto, and G.L.M. Ferreira, “Residual shear strength of sandy clay reinforced with short polypropylene fibres randomly oriented”, in Proceedings of the 8th International Conference on Geosynthetics, 2006, Yokohama, Japan, vol. 4. 2006, pp. 1663-1666.
  • [16] C. Tang, B. Shi, W. Gao, F. Chen, and Y. Cai, “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil”, Geotextiles and Geomembranes, vol. 25, no. 3, pp. 194-202, 2007, doi: 10.1016/j.geotexmem.2006.11.002.
  • [17] B. Freilich, C. Li, and J.G. Zornberg, “Effective Shear Strength of Fiber-Reinforced Clays”, in Proceedings of the 9th International Conference on Geosynthetics, 9ICG, May, 2010, Guarujá, Brazil, vol. 4. 2010, pp. 1997-2000.
  • [18] A.R. Estabragh, A.T. Bordbar, and A.A. Javadi, “Mechanical Behavior of a Clay Soil Reinforced with Nylon Fibers”, Geotechnical and Geological Engineering, vol. 29, pp. 899-908, 2011, doi: 10.1007/s10706-011-9427-8.
  • [19] A.R. Estabragh, A.T. Bordbar, and A.A. Javadi, “A Study on the Mechanical Behavior of a Fiber-Clay Composite with Natural Fiber”, Geotechnical and Geological Engineering, vol. 31, pp. 501-510, 2013, doi: 10.1007/s10706-012-9602-6.
  • [20] W. Yixian, G. Panpan, S. Shengbiao, Y. Haiping, and Y. Binxiang, “Study on Strength Influence Mechanism of Fiber-Reinforced Expansive Soil Using Jute”, Geotechnical and Geological Engineering, vol. 34, pp. 1079-1088, 2016, doi: 10.1007/s10706-016-0028-4.
  • [21] J. Qu, C. Li, B. Liu, X. Chen, and Z. Yiao, “Effect of Random Inclusion of Wheat Straw Fibers on Shear Strength Characteristics of Shanghai Cohesive Soil”, Geotechnical and Geological Engineering, vol. 31, pp. 511-518, 2013, doi: 10.1007/s10706-012-9604-4.
  • [22] A. S Zaimoglu and T. Yetimoglu, “Strength Behavior of Fine Grained Soil Reinforced with Randomly Distributed Polypropylene Fibers”, Geotechnical and Geological Engineering, vol. 30, pp. 197-203, 2012, doi: 10.1007/s10706-011-9462-5.
  • [23] W. Wang, D. Zhang, J. Guo, N. Li, Y. Li, H. Zhou, and Y. Liu, “Investigation on the Triaxial Mechanical Characteristics of Cement-Treated Subgrade Soil Admixed with Polypropylene Fiber”, Applied Sciences, 2019, vol. 9, no. 21, art. no. 4557, 2019, doi: 10.3390/app9214557.
  • [24] H. Ahmani, S. Janati, and R. Jamshidi Chenari, “Strength Parameters of Stabilized Clay Using Polypropylene Fibers and Nano-MgO: An Experimental Study”, Geotechnical and Geological Engineering, vol. 38, pp. 2845-2858, 2020, doi: 10.1007/s10706-020-01191-y.
  • [25] M. Arabani and H. Haghsheno, “The efect of water content on shear and compressive behavior of polymeric fiber-reinforced clay”, SN Applied Sciences, vol. 2, art. no. 1759, 2020, doi: 10.1007/s42452-020-03568-3.
  • [26] W.F. Kabeta, “Study on some of the strength properties of soft clay stabilized with plastic waste strips”, Archives of Civil Engineering, vol. 68, no. 3, pp. 385-395, 2022, doi: 10.24425/ace.2022.141892.
  • [27] N.C. Consoli, D.M. Pedro, and L.A. Ulbrich, “Influence of fiber and cement addition on behavior of sandy soil”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 124, no. 12, pp. 1211-1214, 1998, doi: 10.1061/(ASCE)1090-0241(1998)124:12(1211).
  • [28] J.D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007, doi: 10.1109/MCSE.2007.55.
  • [29] M.L. Waskom, “seaborn: statistical data visualization”, Journal of Open Source Software1, vol. 6, no. 60, art. no. 3021, 2021, doi: 10.21105/joss.03021.
  • [30] C.R. Harris, K.J. Millman, S.J. van der Walt, et al., “Array programming with NumPy”, Nature, vol. 585, pp. 357-362, 2020, doi: 10.1038/s41586-020-2649-2.
  • [31] J. Reback, W. McKinney, et al., “pandas-dev/pandas: Pandas 1.0.0. Zenodo”, 2020, doi: 10.5281/zenodo.3509134.
  • [32] P. Virtanen, R. Gommers, T.E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”, Nature Methods, vol. 17, no. 3, pp. 261-272, 2020, doi: 10.1038/s41592-019-0686-2.
  • [33] PN-EN ISO 14688-2:2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów. Część 2: Zasady klasyfikowania. Warszawa: PKN, 2006.
  • [34] J. Qu and Z. Sun, “Strength Behavior of Shanghai Clayey Soil Reinforced with Wheat Straw Fibers”, Geotechnical and Geological Engineering, vol. 34, pp. 515-527, 2016, doi: 10.1007/s10706-015-9963-8.
  • [35] C.A. Anagnostopoulos, D. Tzetzis, and K. Berketis, “Evaluation of the Shear Strength Behaviour of Polypropylene and Carbon Fibre Reinforced Cohesive Soils”, Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 20, pp. 4327-4342, 2014, doi: 10.19026/rjaset.7.805.
  • [36] W. Shao, B. Cetin, Y. Li, J. Li, and L. Li, “Experimental Investigation of Mechanical Properties of Sands Reinforced with Discrete Randomly Distributed Fiber”, Geotechnical and Geological Engineering, vol. 32, pp. 901-910, 2014, doi: 10.1007/s10706-014-9766-3.
  • [37] M.A. Dafalla and A.A.B. Moghal, “Effect of Fibercast and Fibermesh inclusion on the direct shear and linear shrinkage response of clay”, Arabian Journal of Geosciences, vol. 9, art. no. 555, 2016, doi: 10.1007/s12517-016-2565-9.
  • [38] P.K. Pradhan, R.K. Kar, and A. Naik, “Effect of Random Inclusion of Polypropylene Fibers on Strength Characteristics of Cohesive Soil”, Geotechnical and Geological Engineering, vol. 30, pp. 15-25, 2012, doi: 10.1007/s10706-011-9445-6.
  • [39] M.M. Benziane, N. Della, S. Denine, S. Sert, and S. Nouri, “Effect of randomly distributed polypropylene fiber reinforcement on the shear bahavior of sandy soil”, Studia Geotechnica et Mechanica, vol. 41, no. 3, pp. 151-159, 2019, doi: 10.2478/sgem-2019-0014.
  • [40] N.S. Correia, S.A. Rocha, P.C. Lodi, and J.S. McCartney, “Shear strength behavior of clayey soil reinforced with polypropylene fibers under drained and undrained conditions”, Geotextiles and Geomembranes, vol. 49, no. 5, pp. 1419-1426, 2021, doi: 10.1016/j.geotexmem.2021.05.005.
  • [41] M.V. Silveira and M.D.T. Casagrande, “Effects of Degradation of Vegetal Fibers on the Mechanical Behavior of Reinforced Sand”, Geotechnical and Geological Engineering, vol. 39, pp. 3875-3887, 2021, doi: 10.1007/s10706-021-01733-y.
  • [42] M.R. Silveira, S.A. Rocha, et al., “Effect of Polypropylene Fibers on the Shear Strength-Dilation Behavior of Compacted Lateritic Soils”, Sustainability, vol. 13, no. 22, art. no. 12603, 2021, doi: 10.3390/su132212603.
  • [43] I. Develioglu and H.F. Pulat, “Shear strength of alluvial soils reinforced with PP fibers”, Bulletin of Engineering Geology and the Environment, vol. 80, pp. 9237-9248, 2021, doi: 10.1007/s10064-021-02474-1.
  • [44] K.S. Heineck and N.C. Consoli, “Discussion: Discrete framework for limit equilibrium analysis of fibre-reinforced soil”, Geotechnique, vol. 54, no. 1, pp. 72-73, 2004, doi: 10.1680/geot.2004.54.1.72.
  • [45] A.A. Diab, S.S. Najjar, S. Sadek, H. Taha, H. Jaffal, and M. Alahmad, “Effect of compaction method on the undrained strength of fiber-reinforced clay”, Soils and Foundations, vol. 58, no. 2, pp. 462-480, 2018, doi: 10.1016/j.sandf.2018.02.013.
  • [46] H. Soleimani-Fard, D. König, and M. Goudarzy, “Plane strain shear strength of unsaturated fiber-reinforced fine-grained soils”, Acta Geotechnica, vol. 17, pp. 105-118, 2022, doi: 10.1007/s11440-021-01197-7.
  • [47] H. Javdanian, N. Soltani, G. Shams, and S. Ghorbani, “Investigating the monotonic behavior of fiber-reinforced soil under triaxial compression using experimental modelling”, Modeling Earth Systems and Environment, vol. 7, pp. 943-952, 2021, doi: 10.1007/s40808-020-00920-9.
  • [48] N.C. Consoli, M.D.T. Casagrandea, and M.R. Coop, “Behavior of a fiber-reinforced sand under large shear strains”, in Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. Millpress Science Publishers/IOS Press, 2005-2006, pp. 1331–1334, doi: 10.3233/978-1-61499-656-9-1331.
  • [49] S.K. Patel and B. Singh, “A Comparative Study on Shear Strength and Deformation Behaviour of Clayey and Sandy Soils Reinforced with Glass Fibre”, Geotechnical and Geological Engineering, vol. 38, pp. 4831-4845, 2020, doi: 10.1007/s10706-020-01330-5.
  • [50] J. Ganiev, S. Yamada, M. Nakano, and T. Sakai, “Effect of fiber-reinforcement on the mechanical behavior of sand approaching the critical state”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14, no. 4, pp. 1241-1252, 2022, doi: 10.1016/j.jrmge.2021.10.003.
  • [51] A. Diambra, E. Ibraim, D. Muir Wood, and A.R. Russell, “Fibre reinforced sands: Experiments and modelling”, Geotextiles and Geomembranes, vol. 28, no. 3, pp. 238-250, 2010, doi: 10.1016/j.geotexmem.2009.09.010.
  • [52] R.E. Thomas and N. Pollen-Bankhead, “Modeling root-reinforcement with a fiber-bundle model and Monte Carlo simulation”, Ecological Engineering, vol. 36, no. 1, pp. 47-61, 2010, doi: 10.1016/j.ecoleng.2009.09.008.
  • [53] A. Diambra, R. Russell, E. Ibraim, and D. Muir Wood, “Determination of fibre orientation distribution in reinforced sand”, Geotechnique, vol. 57, no. 7, pp. 623-628, 2007, doi: 10.1680/geot.2007.57.7.623.
  • [54] A. Ekinci and P.M.V. Ferreira, “The undrained mechanical behaviour of a fibre reinforced heavily over consolidated clay”, presented at ISSMGE – TC 211 International Symposium on Ground Improvement IS-GI, 2012b, 31 May & 1 June, Brussels.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d15cd2b5-51e9-4998-be5a-e7dbdd2a18cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.