Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | R. 94, nr 3 | 75--80
Tytuł artykułu

Nadmiarowy, odporny na awarie przekształtnik DC-DC dla nanosieci

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Redundant multiphase isolated DC-DC converter with parallel current sharing for DC nano grid applications
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł prezentuje pomysł i wyniki badań symulacyjnych odpornego na awarie, nadmiarowego, izolowanego przekształtnika DC-DC o napięciu 380-48V z podziałem prądu pomiędzy pojedynczymi modułami, dla nanosieci napięcia stałego.
EN
This paper presents idea and simulation results of fault tolerant, redundant multiphase isolated 380V-24V DC-DC converter with parallel current sharing for DC nano grid applications.
Wydawca

Rocznik
Strony
75--80
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
Bibliografia
  • [1] Zeltner S., Endres S “Power Electronics for Smart Micro and Nano Grids Controlled by a Novel Two-Wire Interface with Integrated Power and Signal Transfer” 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)
  • [2] Shwehdi M.H., RajaMohamed S. Proposed Smart DC Nano- Grid for Green Buildings —A Reflective View 3rd International Conference on Renewable Energy Research and Applications, Milwakuee, USA 19-22 Oct 2014
  • [3] Chew S.H., Tseng K.J., Hoan Thong Nguyen, An Energy Efficient 48Vdc Bipolar ELVDC LED Lighting System in a High- Rise Building, IEEE PEDS 2015, Sydney, Australia 9 – 12 June 2015
  • [4] Chen F., Burgos R., Boroyevich D., A Transformerless Single- Phase Utility Interface Converter to Attenuate Common-Mode Voltage for DC Microgrid, IEEE Trans. Magn.2017, 157-162
  • [5] Ryu M., Kim H., Baek J., Jung, Effective Test Bed of 380-V DC Distribution System Using Isolated Power Converters, IES Trans. Magn. 62 (2015), n.7, 4525-4536
  • [6] Nan Ch., Angkititrakul S., Liang Z., Optimal Design of a Redundant High Current DC/DC, IEEE Trans Magn.2015, 2109-2115
  • [7] Gleissner M., Bakran M. M., Operation of Fault-Tolerant Non- Isolated Multiphase 3-Level DC–DC Converters for 48 V Automotive Power Systems, ECCE- Europe EPE2015, 1-10, Conference Publication
  • [8] Tarisciotti L., Zanchetta P., Watson A., Bifaretti S., Clare J. C., Wheeler P. W., Active DC Voltage Balancing PWM Technique for High-Power Cascaded Multilevel Converters, IEEE Trans. Magn. 61 (2014), n.11, 6157-6166
  • [9] Mashra S., Zhou X., Design Considerations for a Low-Voltage High-Current Redundant Parallel Voltage Regulator Module System, IEEE Trans. Magn. 58 (2011), n.4
  • [10] White R. V., Using Redundant DC Power In High Availability Systems, IEEE Trans. Magn.2006, 848-853
  • [11] Perkinson J., Current sharing of Reduntant DC-DC Converters in High Availability Systems – A Simple Approach, IEEE APEC 1995, 952-956 vol.2 Conference Publication
  • [12] Shimamori H., Itakura K., Yamashita S. Kohama T.,. Ninomiya T, Abnormal Phenomenon of Output-Voltage Increase and Its Solution in a Parallel-Redundant DC-DC Converter System with Current Sharing Control, IEEE INTELEC 2005, 557-562 Conference Publication
  • [13] Butticchi G., Andresen M., Costa L., Liserre M., Modular DC/DC Converter Structure with Multiple Power Flow Paths for Smart Transformer Applications, ECCE-Europe EPE2015, 1-9, Conference Publication
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d15916b8-44eb-4a80-9167-3b7ee3af31aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.