Czasopismo
2013
|
Vol. 61, no 3-4
|
263--275
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We prove that Platonic and some Archimedean polyhedra have the fixed point property in a non-classical sense.
Słowa kluczowe
Rocznik
Tom
Strony
263--275
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland, miklasze@mat.umk.pl
Bibliografia
- [1] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [2] C. Chevalley, Theory of Lie Groups, Princeton Univ. Press, 1999.
- [3] H. S. M. Coxeter, The binary polyhedral groups and other generalizations of the quaternion group, Duke Math. J. 7 (1940), 367–379.
- [4] H. S. M. Coxeter, Regular Complex Polytopes, Cambridge Univ. Press, 1974.
- [5] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer, 1972.
- [6] A. Dold, Lectures on Algebraic Topology, Springer, 1972.
- [7] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer, 1999.
- [8] M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, 1967.
- [9] J. Kovic, Symmetry-type graphs of Platonic and Archimedean solids, Math. Comm. 16 (2011), 491–507.
- [10] W. Kryszewski, Homotopy Properties of Set-Valued Mappings, Torun, 1997.
- [11] C. N. Maxwell, Fixed points of symmetric product mappings, Proc. Amer. Math. Soc. 8 (1957), 808–815.
- [12] D. Miklaszewski, The Brouwer fixed point theorem for some set mappings, Bull. Polish Acad. Sci. Math. 61 (2013), 133–140.
- [13] N. Rallis, A fixed point index theory for symmetric product mappings, Manuscripta Math. 44 (1983), 279–308.
- [14] W. I. Stringham, Determination of the finite quaternion groups, Amer. J. Math. 4 (1881), 345–357.
- [15] B. de La Vaissière, P. W. Fowler and M. Deza, Codes in Platonic, Archimedean, Catalan, and related polyhedra: a model for maximum addition patterns in chemical cages, J. Chem. Inf. Comput. Sci. 41 (2001), 376–386.
- [16] H. Weyl, Symmetry, Princeton Univ. Press, 1952.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-d14359df-2815-46a3-a9ca-7c68eee68e76