Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 36, no. 1 | 66--75
Tytuł artykułu

Automatic tracking of neural stem cells in sequential digital images

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neural stem cells are the cells that give rise to the main cell types of the nervous system. Due to their varying size and shape, and random movement, the tracking of these cells in suspension in video sequences is challenging. This paper develops an automatic tracking system for neural stem cells. The system first detects and localizes cells in the image sequence, followed by a feature extraction step for the subsequent cell tracking. Then, the system tracks inactive cells using an improved mean shift algorithm, divisive cells through a context-based technique, and active cells by means of dynamic local prediction (DLP) and gray prediction (GP) algorithms. Experimental results show that the proposed system not only improves the accuracy of fast moving tracking, but also constructs accurately the trajectories of the cell movement and reduces the iterations during the center searching.
Wydawca

Rocznik
Strony
66--75
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China, zhb827@sjtu.edu.cn
autor
  • Faculty of Engineering and Information Technology, University of Technology, Australia, Wenjing.Jia@uts.edu.au
autor
autor
  • Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China, jieyang@sjtu.edu.cn
Bibliografia
  • [1] Li Z, Hu S, Ghosh Z, Han Z, Wu JC. Functional comparison and expression profiling of human induced pluripotent stem cell and embryonic stem cell-derived endothelial cells. Stem Cells Dev 2011;20:1701–10.
  • [2] Gu E, Chen WY, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2012;2 (4):335–45.
  • [3] Schroeder T. Imaging stem-cell-driven regeneration in mammals. Nature 2008;453(7193):345–51.
  • [4] Ozturk Z, Sadettin S. Cell culture technology for pharmaceutical and cell-based therapies. New York: Marcel Dekker Inc; 2005.
  • [5] Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science 2003;300:82–6.
  • [6] Lin ZL. An affine transformation invariance approach to cell tracking. Comput Med Imaging Graph 2008;32:554–65.
  • [7] Li SC, Tachiki LM, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev 2010;6(2):317–33.
  • [8] Lee PW, Hsu SH. Multifunctional core–shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 2010;31:2425–34.
  • [9] Sharp GC, Jiang SB, Shimizu S, Shirato H. Tracking errors in a prototype real-time tumour tracking system. Phys Med Biol 2004;49:5347–56.
  • [10] Dufour A, Shinin V, Tajbakhsh S, Guillén-Aghion N, Olivo- Marin JC, Zimmer C. Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Process 2005;9:1396–410.
  • [11] Padfield D, Rittscher J, Thomas N, Roysam B. Spatio- temporal cell cycle phase analysis using level sets and fast marching methods. Med Image Anal 2009;13:143–50.
  • [12] Li K, Miller E, Weiss L, Campbell P, Kanade T. Online tracking of migrating and proliferating cells imaged with phase-contrast microscopy. Proceedings of the CVPRW; 2006. p. 65–72.
  • [13] Dunn GA, Jones GE. Cell motility under the microscope: Vorsprung durch technik. Nat Rev 2004;5:667–72.
  • [14] Dewan MAA, Ahmad MO, Swamy MNS. Tracking biological cells in time-lapse microscopy: an adaptive technique combining motion and topological features. IEEE Trans Biomed Eng 2011;58:1637–47.
  • [15] Debeir O, Ham PV, Kiss R, Decaestecker C. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans Med Imaging 2005;24:697–711.
  • [16] Hossein M, Shahriar N. On robustness and localization accuracy of optical flow computation for underwater color images. Comput Vis Image Underst 2006;104:61–76.
  • [17] Cheng Y. Mean shift, mode seeking, and clustering. EEE Trans Pattern Anal Mach Intell 1995;17:790–9.
  • [18] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 2002;24:603–19.
  • [19] Deng JL. Gray theory elements. Wu Han: Central China Science and Technology Publishing House; 2002.
  • [20] Deng JL. Gray prediction and gray decision—making. Wu Han: Central China Science and Technology Publishing House; 2002.
  • [21] Tien TL. A new grey prediction model FGM(1, 1). Math Comput Model 2009;49:1416–26.
  • [22] Lin CB, Su SF, Hsu YT. High-precision forecast using grey models. Int J Syst Sci 2001;32:609–19.
  • [23] Umesh Adiga PS, Chaudhuri BB. An efficient method based on watershed and rule-based merging for segmentation of 3-D histopathological images. Pattern Recognit 2001;34:1449–58.
  • [24] Xu XY, Li BX. Adaptive rao-blackwellized particle filter and its evaluation for tracking in surveillance. IEEE Trans Imaging Process 2007;16:838–49.
  • [25] Gerlich D, Mattes J, Eils R. Quantitative motion analysis and visualization of cellular structures. Methods 2003;29:3–13.
  • [26] Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory tumor motion for real-time image-guided radiotherapy. Phys Med Biol 2004;49:425–40.
  • [27] Nath SK, Palaniappan K, Bunyak F. Cell segmentation using coupled level sets and graph-vertex coloring. MICCAI 2006;4190:101–8.
  • [28] Weszka JS. A survey of threshold selection techniques. Comput Graph Image Process 1978;7:259–65.
  • [29] Donald H, Baker PM. Computer graphics with OpenGL. New Jersey: Prentice-Hall International; 2004.
  • [30] Korzynska A, Strojny W, Hoppe A, Wertheim D, Hoser P. Segmentation of microscope images of living cells. Pattern Anal Appl 2007;10(4):301–19.
  • [31] Iwanowski M, Korzyńska A. Segmentation of moving cells in bright field and epi-fluorescent microscopic image sequences. Lecture notes in computer science. Springer-Verlag; 2010.
  • [32] Korzyńska A, Iwanowski M. Multistage morphological segmentation of bright-field and fluorescent microscopy images. Opto-Electron Rev 2012;20(2):174–86.
  • [33] Warowny M, Markiewicz T. Quick texture generation for multiobject image analysis in brain pathology. Przeglad Elektrotechniczny 2010;86(1):50–2.
  • [34] Koprowski R, Izdebska-Straszak G, Wróbel Z, Adamek B. The cell structures segmentation with using of decision trees. Pattern Recognit Image Anal 2005;15(3):1–8.
  • [35] Korzynska A. Neutrophils movement in vitro. Pattern Ann N Y Acad Sci 2002;972:139–43.
  • [36] Korzynska A, Iwanowski M, Neuman U, Dobrowolska E, Hoser P. Comparison of the methods of microscopic image segmentation. World Congress on Medical Physics and Biomedical Engineering, vol. 25(4); 2009. pp. 425–8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d1263bd9-936d-4fe6-997a-873159ec6ce4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.