Warianty tytułu
Języki publikacji
Abstrakty
Jakarta had a congestion level of 53% in 2019, ranking 10th among the most traffic jams globally. Therefore, the transportation sector is the largest contributor to air pollution in the special area of the capital city Jakarta (DKI Jakarta). In this study, a vehicle age cohort was analyzed using dynamic models. Several factors, such as emission standards, vehicle speed, as well as fuel quality and type, were included to drive the models. The emission inventory for air pollutants, such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx ), and particulate matter (PM10) can be calculated using this model. The results showed that motorbikes were the major contributor to the increase in the four pollutants in DKI Jakarta from 2007 to 2018 and will still be a significant contributor until 2040. In 2018, the major contributors to CO, HC, NO, and PM10 were motorbikes (52.7%), motorbikes (79.6%), buses (63.9%), and motorbikes (74.7%), respectively. It is predicted that in 2040, using the business-as-usual (BAU) scenario, motorbikes will also be the primary contributors of air pollutants (CO, HC, and PM) 70.2%, 91.4%, and 82.9%, respectively. Diesel passenger cars will become a lesser contributor to air pollutants than all vehicles from 2018 to 2040 in DKI Jakarta.
Słowa kluczowe
Rocznik
Tom
Strony
92--103
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan, mgidarjati@gmail.com
autor
- Faculty of Environmental Engineering, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan, matsumoto-t@kitakyu-u.ac.jp
Bibliografia
- 1. Kusumaningtyas, S.D.A., Aldrian, E., Wati, T., Atmoko, D., Sunaryo, S. 2018. The Recent State of Ambient Air Quality in Jakarta. Aerosol and Air Quality Research, 18(9), 2343–2354.
- 2. Rita, R., Lestiani, D.D., Panjaitan, E.H., Santoso, M., Yulinawati, H. 2016. Kualitas Udara (PM10 dan PM2.5) [Air Quality (PM10 dan PM2.5)], Untuk Melengkapi Kajian Indeks Kualitas Lingkungan Hidup, Ecolab, 10(1), 1–7.
- 3. Open Data Jakarta: Indeks Standar Pencemar Udara Di Provinsi DKI Jakarta Tahun 2018. 2018. http://data.jakarta.go.id/dataset/indeks-standar-pencemar-udara-di-provinsi-dki-jakarta-tahun-2018
- 4. Deaton, Michael L. & James J. Winebrake. 2000. Dynamic Modeling of Environmental Systems. Textbook, 142–157.
- 5. Réquia, W.J., Koutrakis, P., and Roig, H.L. 2015. Spatial Distribution of vehicle emission inventories in the federal district, Brazil. Atmospheric Environment, 112, 32–39.
- 6. Jiang, W., Sun, S., and Gao, W. 2016. Vehicle emission trends and spatial distribution in Shandong Province, China, from 2000 to 2014. Atmospheric Environment, 147, 190–199.
- 7. Badan Pusat Statistik/BPS Provinsi DKI Jakarta (2010–2017), Statistik Daerah Prov DKI Jakarta 2010–2017 (Local Statistics of DKI Jakarta Province 2010-2017), BPS Catalogue.
- 8. Badan Pusat Statistik/BPS Provinsi DKI Jakarta (2010, 2013, 2018), Statistik Transportasi DKI Jakarta Tahun 2010, 2013, 2018 (Transportation Statistics of DKI Jakarta 2010, 2013, 2018), BPS Catalogue.
- 9. Rahmawati. 2009. Analisa Penerapan Kebijakan Pengendalian Pencemaran Udara dari Kendaraan Bermotor Berdasarkan Estimasi Beban Emisi (Studi Kasus: DKI Jakarta) (Analysis of Policy Implementation on Controlling the Air Pollution from Vehicle Based on the Estimation of Emission Load), Thesis of Post Graduate School of IPB.
- 10. Mungkasa, Dr.Ir. Oswar Muadzin, Andono Warih. 2018. Air Quality of Jakarta: Conditions, Challenges and Priorities, Presentation.
- 11. Open Data Jakarta. 2018. Data Hasil Uji Emisi Tahun 2017 (Data of Emission Test Result in 2017), http://data.jakarta.go.id/dataset/data-hasil-uji-emisi, Local Government website.
- 12. Huo, H., Yao, Z., Zhang, Y., Shen, X., Zhang, Q, Ding, Y., He, K. 2012. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China. Atmospheric Environment, 49, 371–377.
- 13. Batjargal, Bayasgalan, Matsumoto, Toru. 2017. Emission and prediction of road traffic emissions in Ulaanbaatar. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 73(5), 183–190.
- 14. Nur, Yusratika, Puji Lestari, & IGA Uttari. 2008. Inventori Emisi Gas Rumah Kaca (CO2 and CH4 ) Dari Sektor Transportasi Di DKI Jakarta Berdasarkan Konsumsi Bahan Bakar [Emission Inventory of GHG (CO2 and CH4 ) of Transportation Sector in DKI Jakarta Based on the Fuel Consumption], https://www.academia.edu/
- 15. Adhi, Rizky Pratama. 2018. Top-Down and Bottom-Up Method on Measuring CO2 Emission from Road-Based Transportation System (Case Study: Entire Gasoline Consumption, Bus Rapid Transit, and Highway in Jakarta, Indonesia), Jurnal Teknik Lingkungan. Environmental Engineering Journal, 19(2), 249–258.
- 16. PT. Delima Laksana Tata. 2012. Studi Perhitungan Emisi CO2 Pada Setiap Kendaraan Bermotor Transportasi Jalan (Study on CO2 emission calculation for every vehicle on road transportation). Final Report of Project Document for Transportation Department in Indonesia.
- 17. DKI Jakarta Local Government Regulation. 2014. Perda No 5 the Year 2014 on Transportation, Local Government’s Regulation.
- 18. Data Information on Vehicles in DKI Jakarta, SAMSAT (Sistem Administrasi Manunggal Satu Atap/ One roof administration system) of Polda Metro Jaya or Police Corps for DKI Jakarta area, Received 20th Aug 2019.
- 19. Anonymous. carmudi.co.id, Retrieved 20th Aug 2019.
- 20. DieselNet: Emission Standards, https://www.dieselnet.com/standards/jp/ld.php, Ecopoint Inc., Retrieved 10th September 2019.
- 21. Transport Policy: Vietnam Motorcycles Emissions, https://www.transportpolicy.net/standard/vietnam-motorcycles-emissions/ Retrieved 27th September 2019.
- 22. Wang, P., Sun, S., Zao, G., Wanfg, T., Jin, J., Lin, Y., Li, H., Ying, Q., and Mao, H. 2019. Past and future trends of vehicle emissions in Tianjin, China, from 2000 to 2030. Atmospheric Environment, 209, 182–191.
- 23. Tao, J., Qi, L., and Wenzhong, S. 2018. Estimation and analysis of emissions from on-road vehicles in mainland china for the period 2011 – 2015. Atmospheric Environment, 191, 500–512.
- 24. Souza, C.D.R., Silva, S.D., Silva, M.A.V., D’Agosto, M.A., and Barboza, A.P. 2013. Inventory of conventional air pollutants emissions from road transportation for the state of Rio de Janeiro. Energy Policy, 53, 125–135.
- 25. Bellagio, R., Bianconi, R., Corda, G., and Cucca, P. 2007. Emission inventory for the road transport sector in Sardinia (Italy). Atmospheric Environment, 41, 677–691.
- 26. Mishra, D. and Goyal, P. 2014. Estimation of vehicle emissions using dynamics emission factors. A Case Study of Delhi, India. Atmospheric Environment, 98, 1–7.
- 27. Dill, J. 2004. Estimating Emissions Reductions from accelerated vehicle retirement program. Transportation Research Part D: Transport and Environment, 9(2), 87–106.
- 28. Moral, M.J., and Laborda, J. 2019. Scrappage by age: cash for clunkers matters!. Transportation Research Part A: Policy and Practice, 124, 488–504.
- 29. Lumbreras, J., Valdés, M., Borge, R., and Rodríguez, M.E. 2008. Assessment of vehicle emission projections in Madrid (Spain) from 2004 to 2012 considering several control strategies. Transportation Research Part A: Policy and Practice, 42(4), 646–658.
- 30. Wang, J., Jiang, H., Zhou, J., Cheng, X., Lu, Y., Zhang, W., Bi, J., Xue, W., and Liu, N. 2019. cost-benefit analysis of yellow-label vehicles scrappage subsidy policy: a case study of Beijing-Tianjin-Hebei region of China. Journal of Cleaner Production, 232, 94–103.
- 31.Wee, B. V., Jong, G. D., and Nijland, H. 2011. Accelerating car scrappage: a review of research into the environmental impacts. Transport Reviews, 31(5), 549–569.
- 32. Pastorello, C., Caserini, S., Gaifami, P., and Ntziachristos, L. 2017. Impact of the dropping activity with vehicle age on air pollutant emission. Atmospheric Pollution Research, 4, 282–289.
- 33. Li, R., Liu, Z., Wang, X., and Shang, P. 2018. Effects of vehicle restriction policies: analysis using license plate recognition data in Langfang, China. Transportation Research Part A: Policy and Practice, 118, 89–103.
- 34. Szwarcfiter, L., Mendes, F.E, and Rovere, ELL. 2005. Enhancing the effects of the Brazilian program to reduce atmospheric pollutant emissions from vehicles. Transportation Research Part D: Transport and Environment, 10(2), 153–160.
- 35. Purwanto, A.J.: Synchronizing Indonesia’s Diesel Fuel Policy. https://www.eria.org/news-and-views/ synchronizing-indonesias-diesel-fuel-policy/. Retrieved 19th August 2021.
- 36. Hirota, K., Kashima, S. 2020. How are automobile fuel quality standards guaranteed? Evidence from Indonesia, Malaysia and Vietnam. Transportation Research Interdisciplinary Perspectives, 4, 100089.
- 37. Fu, M., Ge, Y., Wang, Y., Tan, J., Yu, L., and Liang, B. 2013. NOx Emission from Euro IV Busses with SCR systems associated with urban, suburban, and freeway driving patterns. Science of the Total Environment, 452–453, 222–226.
- 38. Wang, X., Yang, W., Yu, C., Yuan, W., Wu, X., and Zhang, W. 2018. High-resolution vehicle emission inventory and emission control policy scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region, China. Journal of Cleaner Production, 203, 530–539.
- 39. Lee, T., Shin, M., Lee, B., Chung, J., Kim, D., Keel, J., Lee, S., Kim, I., and Hong, Y. 2019. Rethinking NOx emission factors considering on-road driving with malfunction emission control systems: a case study of Korean Euro 4 light-duty diesel vehicles. Atmospheric Environment, 202, 212–222.
- 40. Kraan, T.C., Ligterink, N.E., and Hensema, A. 2014. Uncertainties in emission of road traffic: Euro-4 diesel NOx emissions as case study. TNO Report 2012 R11316, 13–17.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d10bb04d-8a52-4b47-bd5d-16191e8be1de