Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The goal of this paper is presentation of the variations in MWCNTs-Pt nanocomposite resistance which were examined in the presence of hydrogen with a rising concentration of, respectively, 1, 2, 3 and 4% H2 as well as nitrogen dioxide with a rising concentration of, respectively, 20, 100, 200, 400 ppm of NO2. Design/methodology/approach: Variations in electrical conductivity for the MWCNTs-Pt composite placed, alternately, in the atmosphere of gas and in the atmosphere of selected gases, were measured with a measuring station equipped with precision and inert gas reducers, mass flow meters, filtration systems of gas mixture and the studied mixture’s humidity and temperature control. An active layer of the transducer consisted of MWCNTsPt nanocomposite deposited thereon. All the measurements were carried out in the atmosphere of synthetic air (20% of O2 and 80% of N2) at 22.5°C. Findings: It was found based on the results obtained that system resistance is rising as hydrogen concentration is rising in the atmospheric air. The results of analogous examinations of variations in MWCNTs-Pt nanocomposite resistance carried out for a varying concentration of nitrogen dioxide in the atmosphere of synthetic air are opposite, because lowering system resistance was noted along with a heightening concentration of NO2. The best results were achieved for the nanocomposite presented in the article having a 5% mass concentration of platinum and with uniformly dispersed Pt particles on the surface of carbon nanoparticles. Practical implications: The outcomes presented signify the selectiveness of the applied system consisting of carbon nanotubes decorated with platinum nanoparticles. It means that this material can be used as the active element of harmful gas sensors. Originality/value: A carbon-metal MWCNTs-Pt nanocomposite with special electrical properties was fabricated in the course of research works, whose originality is based on the appropriately selected composition and the specific morphology.
Rocznik
Tom
Strony
14--21
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, anna.dobrzanska-danikiewicz@polsl.pl
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
autor
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] A.D. Dobrzańska-Danikiewicz, The acceptation of the production orders for the realisation in the manufacturing assembly systems, Journal of Materials Processing Technology 175 (2006) 123-132, doi: 10.1016/j.jmatprotec.2005.04.001.
- [2] D. Krenczyk, A. Dobrzańska-Danikiewicz, The deadlocks protection method used in the production systems, Journal of Materials Processing Technology 164-165 (2005) 1388-1394, doi: 10.1016/j.jmatprotec. 2005.02.056.
- [3] A.D. Dobrzańska-Danikiewicz, D. Krenczyk, The method of production flow synchronisation using the meta-rule conception, Journal of Materials Processing Technology 164-165 (2005) 1301-1308, doi: 10.1016/ j.jmatprotec.2005.02.070.
- [4] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam et al., 2015, 3-32.
- [5] M. Nabiałek, P. Pietrusiewicz, M. Dospial, M. Szota, J. Gondro, K. Gruszka, A.D. Dobrzańska-Danikiewicz, S. Walters, A. Bukowska, Influence of the cooling speed on the soft magnetic and mechanical properties of Fe61Co10 Y8W1B20 amorphous alloy, Journal of Alloys and Compounds 615/Sup.1 (2014) S56-S60.
- [6] T. Tański, A.D. Dobrzańska-Danikiewicz, K. Labisz, Long-term development perspectives of selected groups of engineering materials used in the automotive industry, Archives of Metallurgy and Materials 59/4 (2014) 1717-1728, doi: 10.2478/amm-2014-0290.
- [7] B. Godlewska-Żyłkiewicz, K. Pyrzyńska (eds.), Platinum. Application and methods of determination, Malamut Publishing, Warsaw, 2012 (in Polish).
- [8] Johnson Matthey, Precious Metals Marketing, www.platinum.matthey.com, 2015.
- [9] L.A. Dobrzański, Fundamentals of material science, Silesian University of Technology Press, Gliwice, 2012 (in Polish).
- [10] A. Eftekhari (ed.), Nanostructured Materials in Electrochemistry, Wiley-VCH Verlag, Weinheim, 2008.
- [11] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58, doi:10.1038/354056a0.
- [12] H. Dai, Carbon Nanotubes: Synthesis, Integration, and Properties, Accounts of Chemical Research 35 (2002) 1035-1044, doi: 10.1021/ar0101640.
- [13] R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, Comptes Rendus Physique 4/9 (2003) 993-1008, doi: 10.1016/j.crhy. 2003.08.001.
- [14] J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A Materials Science & Processing 69/3 (1999) 255-260, doi: 10.1007/s003390050999.
- [15] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382 (1996) 54-56, doi: 10.1038/382054a0.
- [16] A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39/4 (2001) 507-514, doi: 10.1016/S0008-6223(00)00155-x.
- [17] J. Kong, N.R. Franklikn, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287/5453 (2000) 622-625, doi: 10.1126/science.287.5453.622.
- [18] W.D. Zhang, W.H. Zhang, Carbon Nanotubes as Active Components for Gas Sensors, Journal of Sensors 2009 (2009) 1-16, doi: 10.1155/2009/160698.
- [19] N. Sinha, J. Ma, J.T.W. Yeow, Carbon Nanotubes – Based Sensors, Journal of Nanoscience and Nanotechnology 6/3 (2006) 573-590, doi: 10.1166/jnn. 2006.121.
- [20] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 287/5459 (2000) 1801- 1804, doi: 10.1126/science.287.5459.1801.
- [21] J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13/2 (2002) 195-200, doi: 10.1088/ 0957-4484/13/2/312.
- [22] M. Krüger, I. Widmer, T. Nussbaumer, M. Buitelaar, C. Schönenberger, Sensitivity of single multiwalled carbon nanotubes to the environment, New Journal of Physics 5/1 (2003) 138.1-138.11, doi: 10.1088/1367- 2630/5/1/138.
- [23] D.R. Kauffman, D.C. Sorescu, D.P. Schofield, B.L. Allen, K.D. Jordan, A. Star, Understanding the Sensor Repsonse of Metal-Decorated Carbon Nanotubes, Nano Letters 10/3 (2010) 958-963, doi: 10.1021/nl 903888c.
- [24] N.G. Tsierkezos, S.H. Othman, U. Ritter, L. Hafermann, A. Knauer, J.M. Köhler, Nitrogen-doped multiwalled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing, Journal of Nanoparticle Research 16/10 (2014) 2660, doi: 10.1007/s11051- 014-2660-3.
- [25] A.-J. Wang, P.-P. Zhang, Y.-F. Li, J.-J. Feng, W.-J. Dong, X.-Y. Liu, Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods, Microchimica Acta 175 (2011):31- 37, doi: 10.1007/s00604-011-0650-z.
- [26] Y. Wang, J.T.W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors, Journal of Sensors 2009 (2009) 1-24, doi: 10.1155/2009/493904.
- [27] X.-Q. Lin, H.-H. Deng, G.-W. Wu, H.-P. Peng, A.-L. Liu, X.-H. Lin, X.-H. Xia, W. Chen, Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection, Analyst 140/15 (2015) 5251-5256, doi: 10.1039/c5an00809c.
- [28] X. Feng, X. Li, H. Shi, H. Huang, X. Wu, W. Song, Highly accessible Pt nanodots homogeneously decorated on Au nanorods surface for sensing, Analytica Chimica Acta 852 (2014) 37-44, doi: 10.1016/j.aca. 2014.08.051.
- [29] K. Li, W. Wang, D. Cao, Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing, Sensors and Actuators B: Chemical 159/1 (2011) 171-177, doi: 10.1016/j.snb.2011.06.068.
- [30] K. Photinon, Y. Chalermchart, C. Khanongnuch, S.- H. Wang, C.-C. Liu, A Thick-film Sensor as a Novel Device for Determination of Polyphenols and Their Antioxidant Capacity in White Wine, Sensors 10/3 (2010) 1670-1678, doi: 10.3390/s100301670.
- [31] J. Gong, T. Zhou, D. Song, L. Zhang, Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II), Sensors and Actuators B: Chemical 150/2 (2010) 491-497, doi: 10.1016/j. snb.2010.09.014.
- [32] S. Hrapovic, Y. Liu, J.H.T. Luong, Reusable Platinum Nanoparticle Modified Boron Doped Diamond Microelectrodes for Oxidative Determination of Arsenite, Analytical Chimistry 79/2 (2007) 500-507, doi: 10.1021/ac061528a.
- [33] Q.C. Shi, T.Z. Peng, A novel cholesterol oxidase biosensor based on Pt – nanoparticle/carbon nanotube modified electrode, Chinese Chemical Letters 16/8 (2005) 1081-1084.
- [34] T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of Platinum Nanoparticle-Embedded Carbon Film Electrode and Its Detection of Hydrogen Peroxide, Analytical Chemistry 75/9 (2003) 2080-2085, doi: 10.1021/ac026337w.
- [35] T. Selvaraju, R. Ramaraj, Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications, Journal of Electroanalytical Chemistry 585/2 (2005) 290-300, doi: 10.1016/j. jelechem.2005.09.005.
- [36] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes decorating methods, Journal of Archives of Materials Science and Engineering 61/2 (2013) 53-61.
- [37] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, W. Wolany, Comparative analysis of the structure of nanocomposites consisting of MWCNTs and Pt or Re nanoparticles, in: W.I. Milne, M. Cole (eds.), Carbon nanotechnology, One Central Press, Manchester, UK, 2015, 31-53.
- [38] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, Synthesis and characterization of Pt/MWCNTs nanocomposites, Physica Status Solidi B 250/12 (2013) 2569- 2574, doi: 10.1002/pssb.201300083.
- [39] A. Dobrzańska-Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, Physica Status Solidi B 251/12 (2014) 2420-2425, doi: 10.1002/pssb.201451178.
- [40] A. Dobrzańska-Danikiewicz, D. Łukowiec, M. Pawlyta, T. Gaweł, M. Procek, Resistance changes of carbon nanotubes decorated with platinum nanoparticles in the presence of hydrogen at different and constant concentrations, Physica Status Solidi B 251/ 12 (2014) 2426-2431, doi: 10.1002/pssb.201451179.
- [41] D. Łukowiec, The structure and properties of nanocomposites composed of carbon nanotubes coated with platinum nanoparticles, PhD Thesis, Silesian University of Technology, Gliwice 2014 (in Polish).
- [42] M. Urbańczyk, E. Maciak, K. Gut, T. Pustelny, W. Jakubik, Layered thin film nanostructures of Pd/WO3-x as resistance gas sensors, Bulletin of the Polish Academy of Science Technical Sciences 59/4 (2011) 401-407.
- [43] J. Kong, M.G. Chapline, H. Dai, Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors, Advanced Materials 13/18 (2001) 1384-1386, doi: 10.1002/1521-4095(200109)13:183.0.co;2-8.
- [44] Ł. Kurzepa, A. Lekawa-Raus, J. Patmore, K. Kozioł, Replacing Copper Wires with Carbon Nanotube Wires in Electrical Transformers, Advanced Functional Materials 24/5 (2014) 619-624, doi: 10.1002/adfm. 201302497.
- [45] M. Burda, A. Lekawa-Raus, K. Koziol, et al., PCT stage PCT application number PCT/GB2014/052105.
- [46] M. Burda, A. Lekawa-Raus, A. Gruszczyk, K.K. Kozioł, Soldering of Carbon Materials Using Transition Metal Rich Alloys, ACS Nano 9/8 (2015) 8099- 8107, doi: 10.1021/acsnano.5b02176.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d104df32-14d3-40af-8cf2-ad5beae58e63