Czasopismo
2020
|
Vol. 26, No. 1
|
21--28
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we derive an expression for the complex magnitude of the Dirichlet beta function β(s) represented as a Euler prime product and compare with similar results for the Riemann zeta function. We also obtain formulas for β(s) valid for an even and odd kth positive integer argument and present a set of generated formulas for β(k) up to 11th order, including Catalan’s constant and compute these formulas numerically. Additionally, we derive a second expression for the complex magnitude of β(s) valid in the critical strip from which we obtain a formula for the Euler-Mascheroni constant expressed in terms of zeros of the Dirichlet beta function on the critical line. Finally, we investigate the asymptotic behavior of the Euler prime product on the critical line.
Słowa kluczowe
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- 214 W Jennifer Ln, #6 Palatine, IL 60067, USA , art.kawalec@gmail.com
Bibliografia
- 1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, 9th printing, New York (1964).
- [2] H.M. Edwards, Riemann’s Zeta Function, Dover Publications, Mineola, New York (1974).
- [3] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford Science Publications (2008).
- [4] A. Kawalec, Prime product formulas for the Riemann zeta function and related identities, math.GM/1901.09519v4 (2019).
- [5] A. Kawalec, Asymptotic formulas for harmonic series in terms of a non-trivial zero on the critical line, Computational Methods in Science and Technology 25(4), 161–166 (2019).
- [6] LMFDB- The L-functions and Modular Forms Database, http://www.lmfdb.org/ (2019).
- [7] A. Patkowski, M. Wolf, Some Remarks on Glaisher-Ramanujan Type Integrals, Computational Methods in Science and Technology 22(2), 103–108 (2016).
- [8] M. Wolf, 6+ infinity new expressions for the Euler-Mascheroni constant, math.NT/1904.09855 (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d0f76940-7667-4d90-9194-1bc031842365