Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 17, no. 2 | 336--343
Tytuł artykułu

Thermal effect on the dynamic error of a high-precision worktable

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the thermal effect on the dynamic error of a high-precision machine worktable during operation. The thermo-mechanical model was established to obtain the motion errors of the worktable by considering the combined effects of varying internal heat sources and external thermal drifts. The temperature tests were performed to obtain the initial conditions of the model and provide a verification for the analytical convection coefficients and heat flux, which were obtained by inverse analysis. The predicted yawing errors of the worktable were confirmed by interferometer tests. Numerical and experimental results suggest that the environmental temperature fluctuation is the largest contributor to the motion errors of the worktable, and they increase with the increasing of environmental temperature. This study allows deeper insights into the underlying mechanisms that result in the motion accuracy variations of the worktable due to the thermal effects, which can provide a strategy for manufacture to further compensate the thermal error and realize ultra precision.
Wydawca

Rocznik
Strony
336--343
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Graduate School at Shenzhen, Harbin Institute of Technology, Harbin 150001, PR China
autor
  • Graduate School at Shenzhen, Harbin Institute of Technology, Harbin 150001, PR China, b.wang@westernsydney.edu.au
  • Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia
Bibliografia
  • [1] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al., Thermal issues in machine tools, CIRP Annals – Manufacturing Technology 61 (2) (2012) 771–791.
  • [2] J. Jedrzejewski, W. Modrzycki, Z. Kowal, W. Kwaśny, Z. Winiarski, Precise modelling of HSC machine tool thermal behavior, Journal of Achievements in Materials and Manufacturing Engineering 24 (1) (2007) 245–252.
  • [3] H. Haddad, M. Al Kobaisi, Optimization of the polymer concrete used for manufacturing bases for precision tool machines, Composites Part B: Engineering 43 (8) (2012) 3061–3068.
  • [4] J.D. Suh, D.G. Lee, Thermal characteristics of composite sandwich structures for machine tool moving body applications, Composite Structures 66 (66) (2004) 429–438.
  • [5] S. Lee, J. Yoo, M. Yang, Effect of thermal deformation on machine tool slide guide motion, Tribology International 36 (1) (2003) 41–47.
  • [6] W.S. Yun, S.K. Kim, D.W. Cho, Thermal error analysis for a CNC lathe feed drive system, International Journal of Machine Tools and Manufacture 39 (7) (1999) 1087–1101.
  • [7] J. Zhang, P. Feng, C. Chen, D. Yu, Z. Wu, A method for thermal performance modeling and simulation of machine tools, International Journal of Advanced Manufacturing Technology 68 (5–8) (2013) 1517–1527.
  • [8] E. Gomez-Acedo, A. Olarra, L.N. Lopez de la Calle, A method for thermal characterization and modeling of large gantry-type machine tools, International Journal of Advanced Manufacturing Technology 62 (9–12) (2012) 875–886.
  • [9] J.J. Kim, Y.H. Jeong, D.W. Cho, Thermal behavior of a machine tool equipped with linear motors, International Journal of Machine Tools and Manufacture 44 (7–8) (2004) 749–758.
  • [10] J.H. Chow, Z.W. Zhong, W. Lin, L.P. Khoo, A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage, Applied Thermal Engineering 48 (26) (2012) 89–96.
  • [11] J.H. Chow, Z.W. Zhong, W. Lin, L.P. Khoo, W.J. Lin, G.L. Yang, Investigation of thermal effect in permanent magnet linear motor stage, in: 11th Int. Conf. on Control, Automation, Robotics and Vision, ICARCV 2010, Singapore, vol. 20 (1), (2010) 258–262.
  • [12] S. Rakuff, P. Beaudet, Thermal and structural deformations during diamond turning of rotationally symmetric structured surfaces, Journal of Manufacturing Science and Engineering 130 (4) (2008) 041004–41009.
  • [13] N.S. Mian, S. Fletcher, A.P. Longstaff, A. Myers, Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations, Precision Engineering 37 (2) (2013) 372–379.
  • [14] H.T. Zou, B.L. Wang, Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation, Tribology International 92 (2015) 472–484.
  • [15] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
  • [16] S. Mostafa Ghiaasiaan, Convective Heat and Mass Transfer, Cambridge University Press, New York, 2011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d0e2ea2e-403d-4fac-82a5-cf6b0bda169f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.