Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 5 | 389--403
Tytuł artykułu

Life Cycle Environmental Implications of Wastewater Treatment at an Academic Institution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study performs a life cycle assessment (LCA) on the wastewater treatment operations at Sebelas Maret University in Surakarta, Indonesia, with the goal of systematically evaluating the environmental impacts associated with its processes. LCA serves as a comprehensive method for assessing environmental impacts across all stages of a product’s life cycle, which includes goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA), and interpretation. Utilizing this methodology, our analysis categorizes environmental impacts into three significant domains: human health, ecosystem quality, and resource depletion. The findings indicate that human health is the most impacted category, showing an effect of 0.275 disability-adjusted life years (DALY) -equivalent units. Resource depletion follows, measured at 0.193 DALY-equivalent units, and non-renewable energy consumption is quantified at 0.0214 DALY-equivalent units. To address these impacts, the study proposes several improvement strategies, such as adopting more sustainable clean water treatment technologies, capturing and utilizing methane gas through anaerobic digestion, and establishing green spaces for CO2 sequestration. These strategies aim to reduce the environmental footprint of the wastewater treatment process, moving towards more sustainable management practices.
Wydawca

Rocznik
Strony
389--403
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Department of Environmental Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Department of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
Bibliografia
  • 1. Septiariva I.Y., Suryawan I.W.K. 2021. Development of water quality index (WQI) and hydrogen sulfide (H2S) for assessment around suwung landfill, Bali Island. J. Sustain. Sci. Manag., 16(4), 137–148.
  • 2. Jiang R., Wu P. 2019. Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transp. Res. Part D Transp. Environ, 77, 148–163, doi: 10.1016/j.trd.2019.10.010.
  • 3. Abdulkareem M., Havukainen J., Nuortila-Jokinen J., Horttanainen, M. 2021. Life cycle assessment of a low-height noise barrier for railway traffic noise. J. Clean. Prod, 323, 129169, doi: https://doi.org/10.1016/j.jclepro.2021.129169.
  • 4. Man Y., Han J., Li Y., Hong M. 2019. Review of energy consumption research for papermaking industry based on life cycle analysis. Chinese J. Chem. Eng, 27(7), 1543–1553, https://doi.org/10.1016/j.cjche.2018.08.017.
  • 5. Suryawan I.W.K., Rahman A., Lim J., Helmy Q. 2021. Environmental impact of municipal wastewater management based on analysis of life cycle assessment in Denpasar City. Desalin. Water Treat. 244, 55–62, doi: 10.5004/dwt.2021.27957.
  • 6. McAloone T.C., Pigosso D.C.A. Ecodesign Implementation and LCA BT - life cycle assessment: theory and practice. Hauschild M.Z., Rosenbaum R.K., Olsen S.I. Eds., Cham: Springer International Publishing, 2018, pp. 545–576. doi: 10.1007/978-3-319-56475-3_23.
  • 7. Brundage M.P., Bernstein W.Z., Hoffenson S., Chang Q. 2018. Analyzing environmental sustainability methods for use earlier in the product lifecycle. J. Clean. Prod., 187, 877–892, doi: https://doi.org/10.1016/j.jclepro.2018.03.187.
  • 8. Roos Lindgreen E., Mondello G., Salomone R., Lanuzza F., Saija G. 2021. Exploring the effectiveness of grey literature indicators and life cycle assessment in assessing circular economy at the micro level: a comparative analysis. Int. J. Life Cycle Assess., 26(11), 2171–2191, doi: 10.1007/s11367-021-01972-4.
  • 9. Noor R.T., Soewondo P. 2018. Selection of alternative domestic wastewater treatment technology with using life cycle assessment (LCA) approach: case study settlement area of Riverbank Karang Mumus of Samarinda City, East Kalimantan. Indones. J. Urban Environ. Technol., 1(2), 165, doi: 10.25105/ urbanenvirotech.v1i2.2825.
  • 10. Byrne D.M., Lohman H.A.C., Cook S.M., Peters G.M., Guest J.S. 2017. Life cycle assessment (LCA) of urban water infrastructure: Emerging approaches to balance objectives and inform comprehensive decision-making. Environ. Sci. Water Res. Technol, 3(6), 1002–1014, doi: 10.1039/c7ew00175d.
  • 11. Zhang, Q.H., Wang X.C., Xiong J.Q., Chen R., Cao B. 2010. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project – case study of Xi’an, China. Bioresour. Technol. 101(5), 1421–1425, doi: https://doi.org/10.1016/j.biortech.2009.05.071.
  • 12. Muñoz I., Rodríguez A., Rosal R., Fernández-Alba A.R. 2009. Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci. Total Environ, 407(4), 1245–1256, doi: https://doi.org/10.1016/j.scitotenv.2008.09.029.
  • 13. Polruang S., Sirivithayapakorn S., Prateep Na Talang R. 2018. A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. J. Clean. Prod, 172, 635–648, doi: https://doi.org/10.1016/j.jclepro.2017.10.183.
  • 14. Opher T., Friedler E. 2016. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse,” J. Environ. Manage, 182, 464–476, doi: https://doi.org/10.1016/j. jenvman.2016.07.080.
  • 15. Tabesh M., Feizee Masooleh M., Roghani B., Motevallian S.S. 2019. Life-cycle assessment (LCA) of wastewater treatment plants: a case study of Tehran, Iran. Int. J. Civ. Eng., 17(7), 1155–1169, doi: 10.1007/s40999-018-0375-z.
  • 16. Martinez-Burgos W.J., De E., Medeiros A.B.P., de Carvalho J.C. 2021. Hydrogen: Current advances and patented technologies of its renewable production. J. Clean. Prod, 286, 124970, https://doi.org/10.1016/j.jclepro.2020.124970.
  • 17. Sazali N. 2020. Emerging technologies by hydrogen: a review. Int. J. Hydrogen Energy, 45(38), 18753–18771, https://doi.org/10.1016/j.ijhydene.2020.05.021.
  • 18. Abdalla A.M., Hossain S., Nisfindy O.B., Azad A.T., Dawood M., Azad A.K. 2018. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers. Manag, 165, pp. 602–627, https://doi.org/10.1016/j.enconman.2018.03.088.
  • 19. Heimersson S., Svanström M., Laera G., Peters G. 2016. Life cycle inventory practices for major nitrogen, phosphorus and carbon flows in wastewater and sludge management systems. Int. J. Life Cycle Assess., 21(8), 1197–1212, doi: 10.1007/s11367-016-1095-8.
  • 20. Penman J., Gytarsky M., Hiraishi T., Irving W., Krug T. 2006. 2006 IPCC - Guidelines for National Greenhouse Gas Inventories. Directrices para los Inventar. Nac. GEI. 12, [Online]. Available: http://www.ipccnggip.iges.or.jp/public/2006gl/index.html
  • 21. Doorn M. et al., 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 6: Wastewater Treatment and Discharge. Intergovernmental Panel on Climate Change,.
  • 22. Kementerian Lingkungan Hidup Republik Indonesia, PerMen LH No. 12: Pedoman Perhitungan Beban Emisi Kegiatan Industri Minyak dan Gas Bumi. Jakarta. DKI Jakarta: Kementrian Lingkungan Hidup Indonesia, 2012.
  • 23. Hutagalung W.L.C., Sakinah A., Rinaldi R. 2020. Estimasi Emisi Gas Rumah Kaca pada Pengelolaan Sampah Domestik dengan Metode IPCC 2006 di TPA Talang Gulo Kota Jambi. J. Tek. Sipil dan Lingkung,. 5(1), 59–68, doi: 10.29244/jsil.5.1.59-68.
  • 24. Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia, Regulation of the Minister of Environment and Forestry Number 68 of 2016 concerning Domestic Wastewater Quality Standards. 2016.
  • 25. Harjanto T.R., Fahrurrozi M., Bendiyasa I.M. 2014. Life cycle assessment pabrik semen PT Holcim Indonesia Tbk. Pabrik Cilacap: Komparasi antara Bahan Bakar Batubara dengan Biomassa,” J. Rekayasa Proses, 6(2), 51–58, doi: 10.22146/jrekpros.4696.
  • 26. Suryawan I.W.K., Fauziah E.N., Septiariva I.Y., Ramadan B.S. 2022. Pelletizing of various municipal solid waste: effect of hardness and density into caloric value. Ecol. Eng. Environ. Technol. 23(2), 122–128, https://doi.org/10.12912/27197050/145825.
  • 27. Raksasat R. et al. 2020. A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environ. Pollut. 267, 115488, https://doi.org/10.1016/j.envpol.2020.115488.
  • 28. Hallett K.C. 2011. Energy intensity of water: literature suggests increasing interest despite limited and inconsistent data. ASME 2011 International Mechanical Engineering Congress and Exposition. 409–419, doi: 10.1115/IMECE2011-62301.
  • 29. Kampf G., Todt D., Pfaender S., Steinmann E. 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104(3), 246–251, https://doi.org/10.1016/j.jhin.2020.01.022.
  • 30. Mihelcic J.R. et al., 2017. Accelerating innovation that enhances resource recovery in the wastewater sector: advancing a national testbed network. Environ. Sci. Technol, 51(14), 7749–7758, doi: 10.1021/acs.est.6b05917.
  • 31. Corominas L., Foley J., Guest J.S., Hospido A., Larsen H.F., Morera S., Shaw A. 2013. Life cycle assessment applied to wastewater treatment: State of the art. Water Res, 47(15), 5480–5492, https://doi.org/10.1016/j.watres.2013.06.049
  • 32. Dong S., Li J., Kim M.H., Park S.J., Eden J.G, Guest J.S., Nguyen T.H. 2017. Human health tradeoffs in the disinfection of wastewater for landscape irrigation: Microplasma ozonation: Vs. chlorination. Environ. Sci. Water Res. Technol., 3(1), 106–118, doi: 10.1039/c6ew00235h.
  • 33. Zhou H.et al., 2021. Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis. Renew. Energy, 176, 565578, https://doi.org/10.1016/j.renene.2021.05.007.
  • 34. Banti D.C., Tsangas M., Samaras P., Zorpas A. 2020. LCA of a Membrane Bioreactor Compared to Activated Sludge System for Municipal Wastewater Treatment. Membranes, 10(12,) doi: 10.3390/membranes10120421.
  • 35. Parra-Saldivar R., Bilal M., Iqbal H.M.N. 2020. Life cycle assessment in wastewater treatment technology. Curr. Opin. Environ. Sci. Heal. 13, 80–84, https://doi.org/10.1016/j.coesh.2019.12.003.
  • 36. Clabeaux R., Carbajales-Dale M., Ladner D., Walker T. 2020. Assessing the carbon footprint of a university campus using a life cycle assessment approach. J. Clean. Prod. 273, 122600, https://doi.org/10.1016/j.jclepro.2020.122600.
  • 37. Rashid S.S., Liu Y.Q. 2020. Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA. Environ. Sci. Pollut. Res, 27(13), 15674–15690, doi: 10.1007/s11356-020-08038-2.
  • 38. Frances A. 2014. A comparative assessment of BORDA decentralized wastewater treatment system with Schleswig centralized system using life cycle assessment Germany. University of Flensburg.
  • 39. Sapkota N. 2016. Environmental performance evaluation of decentralized wastewater treatment systems using life cycle analysis. Norway: Norwegian University of Life Science, [Online]. Available: https://brage.bibsys.no/xmlui/bitstream/handle/11250/2435169/Sapkota_2016.pdf?sequence=6
  • 40. Khatri N., Khatri K.K., Sharma A. 2020. Enhanced energy saving in wastewater treatment plant using dissolved oxygen control and hydrocyclone. Environ. Technol. Innov, 18, 100678,
  • 41. Schäfer M., Gretzschel O., Steinmetz H. 2020. The possible roles of wastewater treatment plants in sector coupling. Energies, 13(8), 2088,
  • 42. Shivanna K.R. 2022. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad, 88(2), 160–171, doi: 10.1007/s43538-022-00073-6.
  • 43. Kusuma R.T., Hiremath R.B., Rajesh P., Kumar B., Renukappa S. 2022. Sustainable transition towards biomass-based cement industry: a review. Renew. Sustain. Energy Rev, 163, 112503, https://doi.org/10.1016/j.rser.2022.112503.
  • 44. Suryawan I.W.K., Lee C.H. 2023. Community preferences in carbon reduction: Unveiling the importance of adaptive capacity for solid waste management. Ecol. Indic, 157, 111226, https://doi.org/10.1016/j.ecolind.2023.111226.
  • 45. Yoro K.O., Daramola M.O. 2020. CO2 emission sources, greenhouse gases, and the global warming effect in Advances in carbon capture. Elsevier, pp. 3–28.
  • 46. Guo Z., Sun Y., Pan S.Y., Chiang P.C. 2019. Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants. International Journal of Environmental Research and Public Health, 16(7), doi: 10.3390/ijerph16071282.
  • 47. Vidal-Amaro J.J., Ostergaard P.A., Sheinbaum-Pardo C. 2015. Optimal energy mix for transitioning from fossil fuels to renewable energy sources–the case of the Mexican electricity system. Appl. Energy, 150, 80–96.
  • 48. Scott A., Blanchard R. 2021. The role of anaerobic digestion in reducing dairy farm greenhouse gas emissions. Sustainability, 13(5), 2612
  • 49. Styles D., Yesufu J., Bowman M., Williams A.P., Duffy C., Luyckx K. 2022. Climate mitigation eff icacy of anaerobic digestion in a decarbonising economy. J. Clean. Prod, 338, 130441,
  • 50. Saravanakumar K. et al., 2022. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. Chemosphere, 307, 135593, https://doi.org/10.1016/j.chemosphere.2022.135593.
  • 51. Kumar P., Gacem A., Ahmad M.T., Yadav V.K., Singh S., Yadav K.K., Alam M.M., Dawane V
  • 52. Piplode S., Maurya P., Ahn Y., Jeon B.H., Cabral Pinto M.M.S. 2022 Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Frontiers in Environmental Science, 10. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenvs.2022.949581
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d03318ce-80a5-470a-af97-407ef10d5abd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.