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Abstract

Despite the fact that there is an existing body of literature addressing the computation of Coupling Loss Factors (CLFs) 
via the Finite Element Method (FEM), no publications have sufficiently taken into account real structural joints in 
their approach. Previous research has focused on academic cases of trivial connections, rarely involving more than 
two steel plates. To enable Statistical Energy Analysis (SEA) on a real ship, a methodology for determining CLFs for 
non-trivial systems is proposed, considering realistic boundary conditions and irregularities that can occur in marine 
structures. Based on the method, a library of CLFs is created by selecting the tested connections to enable modelling 
of about 90% of the acoustic paths on an existing jack-up vessel. Boundary conditions were set by introducing spring 
elements with a stiffness calibrated to the type of connection and taking the adjacent structure into account. In 
previous works, CLFs were determined for basic connections of rectangular plates. The lack of scantling variations, 
ignoring discontinuities and only defining parallel edges in the considered models, lead to the overestimation of energy 
transmission in real structures. To consider the influence of the above, random deviations from the initial stiffness of 
the springs at individual edges and point restraints at random points are introduced in this paper.  
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introduction

Passenger ships, commercial ships and specialised 
vessels are treated as ordinary workplaces, with respect 
to vibroacoustic conditions, although they have their own 
unique character, being places of both professional and leisure 
activities [1]. For their health, it is important to reduce the 
levels of daily noise and vibration to which they are exposed. 
To do this, one has to be able to predict the transmission 
of vibroacoustic energy at the design stage. Energy-based 
modelling approaches are often used to describe the higher 
frequency vibrational behaviour of complex systems in some 
average, statistical or approximate way. The most important 
of these methods is statistical energy analysis (SEA). At low 

frequencies, the finite element method (FEM) is used. This 
article focuses on determining coupling loss factors (CLF) for 
real-world structural connections in the medium and high 
frequencies (octaves 63-2000 Hz). CLFs are key parameters 
for SEA; they describe the energy transmission between 
connected subsystems.

Basics of SEA

SEA involves the prediction of the vibration response 
of a complex structure by dividing it into subsystems and 
determining the average energy. The transmission of vibration 
energy between subsystems is characterised by damping 
loss factors (DLF) and coupling loss factors (CLF). The DLF 
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corresponds to the damping in the subsystem itself and the 
CLF corresponds to the energy dissipation at the subsystem 
connections. The CLFs and the DLFs form a  matrix of 
coefficients in the energy balance equation, which is used to 
calculate the energy of subsystems when the input powers are 
known. The CLFs can be obtained using an analytical wave 
approach for several types of junctions of semi-infinite plates. 
An alternative is the power injection method (PIM), which 
is an approach in which the CLF values can be obtained by 
measuring subsystem energy and power input [2].

The fundamental relationship, on which the SEA and PIM 
is based, is the balance between the input power and the 
output power of the subsystem (a part of the whole system 
e.g. a single wall). For the i-th subsystem, this equation has 
the following form:
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Fig. 1. Scheme of energy exchange in the SEA system 

where ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖  is the power transferred by the i-th subsystem to the subsystems coupled with it. 

It is assumed that there is no indirect coupling of subsystems (only subsystems in the immediate 
vicinity can transfer energy to each other). The power dissipated by the subsystem depends on 
the damping loss factor and is calculated as follows: 

𝑃𝑃𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝜔𝜔 ∙ 𝜂𝜂𝑖𝑖 ∙  𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡       (3) 

where: 

𝜔𝜔- the angular frequency corresponding to the centre frequency f of the band 

𝜂𝜂𝑖𝑖- damping loss factor (DLF) 

𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡- total energy of the subsystem 

The power transferred from subsystem i to subsystem j depends on the difference in 
vibration energy between them and can be represented by the following relationship: 

𝑃𝑃𝑖𝑖𝑖𝑖 =  𝜔𝜔 ∙ 𝜂𝜂𝑖𝑖𝑖𝑖 ∙  𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 −  𝜔𝜔 ∙ 𝜂𝜂𝑖𝑖𝑖𝑖  ∙  𝐸𝐸𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡     (4) 

 𝜂𝜂𝑖𝑖𝑖𝑖 and 𝜂𝜂𝑗𝑗𝑗𝑗 are coupling loss factors (CLF) which are essential coefficients in SEA. 

By knowing the above dependencies, it is possible to compose SEA equations, which 
can be presented in matrix form:  

𝜔𝜔 |
𝜂𝜂𝑖𝑖 + ∑ 𝜂𝜂1𝑖𝑖𝑁𝑁

𝑖𝑖≠1 ⋯ −𝜂𝜂1𝑁𝑁
⋮ ⋱ ⋮

−𝜂𝜂𝑁𝑁1 ⋯ 𝜂𝜂𝑁𝑁 + ∑ 𝜂𝜂𝑁𝑁𝑁𝑁𝑁𝑁−1
𝑖𝑖≠𝑁𝑁

| × |
〈𝐸𝐸1〉
⋮

〈𝐸𝐸𝑁𝑁〉
| = |

𝑃𝑃𝑖𝑖,1
⋮

𝑃𝑃𝑖𝑖,𝑁𝑁
|   (5) 

The power injection method (sometimes called the experimental SEA or ESEA) 
involves exciting successive subsystems one by one with known power, measuring the total 
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 In practice, both the total energy and input power values are difficult to obtain and are 

potential sources of inaccuracy. Moreover, creating a classic laboratory measuring system is 
costly and time-consuming. Therefore, methods using FEM are developed in parallel to 
experimental research. 

 
STATE OF THE ART   
 

The basics of both SEA and PIM are well described in the literature and yet some of 
their practical aspects remain challenging.  
 

Le Bot and Cotoni [3] created validity diagrams of the SEA and described its 
assumptions in detail. The possibility of using PIM was indicated by Lyon as early as 1975 [4]. 
Laboratory experiments using this method have been described many times [5-7]. Due to the 
difficulty of controlling the input power and obtaining the energy of the subsystems, as well as 
the cost of both the measurement system and the test object, all of these tests were carried out 
for trivial systems. Numerical methods, in the form of a finite element method, became the next 
step in the development of PIM.   

Pankaj et al. [8] described a method to carry out PIM using FEM. The expected results 
were obtained for an L-type connection for discrete frequencies. For SEA to be useful in 
industry, the coefficients must be averaged over the frequency domain. Only the simplest 
system was tested, i.e. two identical perpendicular plates. In a precisely uniform rectangular 
plate, the waves generated within the source plate propagate consistently along fixed paths, 
exhibiting no dispersion to alternate positions as they travel towards the receiving plate. This 
characteristic behaviour arises due to the absence of internal discontinuities and parallel sides. 
Such situations rarely occur in real structures. Even in ships built of repetitive structures, there 
are scantling variations, discontinuities and non-parallel edges. As a result, an irregular system 
has a smaller overall energy transmission than a regular system.   

An interesting approach to estimating CLFs was presented by Thite and Mace [9], who 
proposed to randomise the properties of the system being analysed and average the resulting 
estimates but without repeating the full FEA. This allows for very computationally cheap results 
but is difficult to use in shipbuilding practice. The authors relied on the assumption that 
“response statistics are somewhat independent of detailed physical variables if the variability is 
'large enough'”. Unfortunately, in the case of ship’s structures, the variability of physical 
properties is often not large enough, considering the criteria they adopt.  

Poblet-Puig [10] developed a strategy to solve the problem of negative CLF values, 
which are sometimes obtained from Eq. (8). In the case of the structures considered in this 
article (due to their size), negative CLFs are rare and the proposed averaging technique allows 
them to be ignored. 

There are also numerous publications on vibroacoustic transmission that use techniques 
other than PIM. Shorter and Langley [11] proposed a general method for predicting the 
ensemble average steady-state response of vibroacoustic systems. The authors not only decided 
not to recure to PIM, but bypassed the basic assumptions of SEA as well, concerning the 
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consistently along fixed paths, exhibiting no dispersion to 
alternate positions as they travel towards the receiving plate. 
This characteristic behaviour arises due to the absence of 
internal discontinuities and parallel sides. Such situations 
rarely occur in real structures. Even in ships built of repetitive 
structures, there are scantling variations, discontinuities 
and non-parallel edges. As a result, an irregular system has 
a smaller overall energy transmission than a regular system.

An interesting approach to estimating CLFs was presented 
by Thite and Mace [9], who proposed to randomise the 
properties of the system being analysed and average the 
resulting estimates but without repeating the full FEA. 
This allows for very computationally cheap results but is 
difficult to use in shipbuilding practice. The authors relied 
on the assumption that “response statistics are somewhat 
independent of detailed physical variables if the variability is 
‘large enough’”. Unfortunately, in the case of ship’s structures, 
the variability of physical properties is often not large enough, 
considering the criteria they adopt.

Poblet-Puig [10] developed a strategy to solve the problem 
of negative CLF values, which are sometimes obtained from 
Eq. (8). In the case of the structures considered in this article 
(due to their size), negative CLFs are rare and the proposed 
averaging technique allows them to be ignored.

There are also numerous publications on vibroacoustic 
transmission that use techniques other than PIM. Shorter 
and Langley [11] proposed a general method for predicting 
the ensemble average steady-state response of vibroacoustic 
systems. The authors not only decided not to recure to PIM, 
but bypassed the basic assumptions of SEA as well, concerning 
the strength of the coupling between the subsystems, the 
nature of the excitation, or the resonant nature of the response. 
Their approach also yielded ‘indirect’ CLFs (CLFs between 
statistical subsystems that are not physically adjacent).

Attempts to include stiffened plates in the framework of 
Statistical Energy Analysis have led to the creation of a new 
branch of SEA development, in which subsystems are treated 
as periodic structures. Yin and Hopkins [12] described the 
combination of Bloch theory and wave theory, while Pany 
[13] presented the combination of FEM with Floquet’s theory. 
The asymmetrical stiffeners found in shipbuilding were 
not taken into account in any of these cases. The methods 
mentioned, ingenious as they are in some theoretical respects, 
remain insufficient for grasping the complexity of typical 
ship structures, featuring asymmetries, stiffeners and 
discontinuities.

Using these methods can be helpful but they are insufficient 
for ship construction, specifically.

The original contributions of the present research are:
•	 A library of SEA parameters is created for the structural 

joints of a jack-up vessel; by using this library, one can 
create many SEA models of vibroacoustic paths on various 
ships.

•	 The well-described PIM method is modified to easily reject 
negative CLFs with a minimal impact on the final result. 
The coefficients are averaged, both in the frequency domain 
and for various boundary conditions.

•	 A method of setting boundary conditions is proposed to 
take into account the influence of the adjacent structure 
and internal discontinuities.

Numerical experiments

The selection of structural 
connections

The structural connections shown in this article are parts 
of an existing jack-up vessel. They were selected based on 
the possibility of carrying out an SEA analysis for this unit. 
Using these specific cases, real vibroacoustic transmission 
paths can be modelled for many ships. Structural elements 
were ‘cut out’ from a global FEM model created for strength 
analyses. The global model is shown in Fig. 2. The mesh of 
finite elements was refined to meet the condition λ>7l for 
the selected submodels, where λ is the wavelength and l is 
the element length. This condition was introduced to make 
sure that the flexural wave was mapped correctly.

Fig. 2. Global FEM model of jack-up vessel

The numbering convention shown in Fig. 3 was adopted 
during the calculation and presentation of results. The figure 
shows an X-type junction; in the case of a T-type junction, 
the system only consists of subsystems 1, 2 and 3.

Fig. 3. The numbering convention of subsystems
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A typical stiffener spacing of 685 mm was defined in each 
subsystem. All of the tested systems were made of mild steel 
and the following material properties were assumed globally: 
density ρ= 7850 kg/m3, Poisson’s ratio ν=0.3, Young’s modulus 
E=205GPa, and internal damping η=0.04. It was assumed that 
the value of internal damping is constant and independent 
from frequency. The assumed value is in the range of values 
where the DLF had practically no effect on the CLFs of the 
tested systems. Individual systems are characterised by the 
following values: connection length (Ly), length of the first 
(Lz), second (Lx), third (Lz') and fourth (Lx') subsystem, as 
well as the thickness of the plating of individual subsystems 
and types of stiffeners. A description of each tested system 
is provided in Appendix A.

The finite elements

A vibroacoustic computation using FEM was carried out 
with Ansys software. SHELL181 elements were used to model 
plates and BEAM188 elements were used to model stiffeners. 
SHELL181 is a four-node element with six degrees of freedom 
at each node. A BEAM188 element is suitable for analysing 
slender to moderately stubby/thick beam structures, based on 
Timoshenko beam theory, which includes shear-deformation 
effects. Combin14 elements were used as springs on the edges 
of the submodels.

Input power and subsystem energy

The outputs obtained from the numerical simulations are 
the energy and the input power. Energy associated with the 
out-of-plane vibrations were computed as:
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where F is the vector of the point force and v is the vector 
of the velocity at the application spot in the force direction.

Loads and boundary conditions

Forces were applied to 100 random nodes, at random 
phases (but at a constant amplitude), to implement a ‘rain 
on the roof ’ type of load. A new set of random loads was 
generated for each harmonic solution.

Six springs were attached to each edge node and each 
of them acted on only one degree of freedom. This made it 

possible to control individual degrees of freedom. The spring 
stiffness was calibrated as follows:
•	 The examined intersection was ‘cut out’ from the global 

FEM model, along with the adjacent part of the structure, 
so that the submodel ended with a primary stiffening 
member.

•	 A concentrated force was applied to the joint and the 
result of the static analysis was obtained in the form of 
displacements.

•	 The attached structure was removed from the submodel, 
springs were created and their stiffnesses were iteratively 
selected to obtain the same displacements.
For each run of harmonic analysis, 1, 2 or 3 nodes were 

randomly selected and some of their degrees of freedom were 
fixed (i.e. locked from translation or translation and rotation). 
In the rest of this article, such restraints will be called single 
point constraints (SPC).

The computational workflow

The entire procedure was programmed in Ansys Parametric 
Design Language (APDL) and the procedure was as follows:
•	 Each octave (or third) was represented by seven discrete 

frequencies.
•	 N harmonic analyses were performed for each frequency, 

where N is the number of subsystems.
•	 For each harmonic analysis, the ‘rain on the roof ’ load 

on the subsequent subsystem was applied and specific 
boundary conditions were generated. After each harmonic 
analysis, the matrices from Eq. (6) were filled in.

•	 After calculating the CLFs for each frequency, averaging 
was performed for the entire band. Negative CLFs were 
not taken into account.

•	 After calculating the CLFs for all octaves, the boundary 
condition settings were changed and the next iteration took 
place. The final result was an average of seven iterations.

Validation method

The method was validated in two ways: by comparing the 
CLFs with measurements performed by Treszkai et al. [7] and 
by comparing energy level differences with measurements 
made by Yin and Hopkins [12]. In the first case, two steel 
plates without stiffeners (junction #1) were tested while, in the 
second case, two periodically ribbed Perspex plates (junction 
#2) were tested. The scheme of the stiffened plates is shown in 
Fig. 4. The material properties used in both cases are given in 
Table 1 and the geometrical details are presented in Table 2.

Fig. 4. Periodic ribbed plates scheme. These types of stiffeners were only used 
for the purposes of comparison with work [12].
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Tab. 1. Material properties of the L-junction plates

Junction Plate Material
Young’s 
modulus 

[Pa]

Density 
[kg/m3]

Poisson’s 
ratio [-]

Internal 
loss factor 

[-]

#1
1 Steel 2.05E+11 7850 0.3 0.04

2 Steel 2.05E+11 7850 0.3 0.04

#2
1 Perspex 4.63E+09 1220 0.3 0.06

2 Perspex 4.63E+09 1220 0.3 0.06

Tab. 2. Geometrical description of plates
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#1
1 N/A 2 N/A N/A N/A

2 N/A 2 N/A N/A N/A

#2
1 Perpendicular 10 200 10 60

2 Parallel 10 100 10 60

Results and discussion

Validation

Fig. 5 shows the minimum and maximum values of the 
CLFs (measured experimentally), FEM/SEA results with 
a 95% confidence interval and analytically calculated values, 
based on wave theory for junction #1. The 95% confidence 
intervals were calculated using the Student’s ‘t’ distribution. 

 

 
Fig. 5. Junction #1, comparison between hybrid FEM/SEA results, measurements and wave theory prediction. 

 
The graph in Fig. 5 shows a good consistency between hybrid FEM/SEA measurements. 

As expected, the FEM/SEA values are closer to the maximum measurement results. This could 
be caused by the fact that the FEM model does not take into account weld imperfections. 

The energy level difference (in dB) obtained for junction #2, by hybrid FEM/SEA and 
the measurements in one-third octave bands, are compared in Fig. 6.  Both results are plotted 
with 95% confidence intervals.  
 

 
Fig. 6. Junction #2, comparison between hybrid FEM/SEA results and the measurements. 

 
In general, the results can be considered to be acceptably consistent. As expected, larger 

differences in average values occur in lower frequencies but, in thirds above 300 Hz, the results 
do not differ by more than 2 dB. Discrepancies for some bands may result from several factors. 
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The graph in Fig. 5 shows a good consistency between 
hybrid FEM/SEA measurements. As expected, the FEM/SEA 
values are closer to the maximum measurement results. This 
could be caused by the fact that the FEM model does not take 
into account weld imperfections.

The energy level difference (in dB) obtained for junction 
#2, by hybrid FEM/SEA and the measurements in one-third 
octave bands, are compared in Fig. 6. Both results are plotted 
with 95% confidence intervals.
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Fig. 6. Junction #2, comparison between hybrid FEM/SEA results and the measurements. 

 
In general, the results can be considered to be acceptably consistent. As expected, larger 

differences in average values occur in lower frequencies but, in thirds above 300 Hz, the results 
do not differ by more than 2 dB. Discrepancies for some bands may result from several factors. 
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In general, the results can be considered to be acceptably 
consistent. As expected, larger differences in average values 
occur in lower frequencies but, in thirds above 300 Hz, the 
results do not differ by more than 2 dB. Discrepancies for 
some bands may result from several factors. Firstly, the 
sampling during the measurements was 1 Hz, while the FEM/
SEA result is averaged over seven frequencies for one-third 
octave. The method of excitation was also different; the rain 
on the roof ’ used in FEM simulations is unattainable in the 
conditions of a real experiment, and so point excitations 
were used. During the experiment, the boundary conditions 
did not change. Meanwhile, during the FEM simulation, the 
stiffness of the model edge restraint changed randomly and 
random SPCs appeared. This indicates that the ensemble 
average represents deterministic systems well.

The influence of the boundary conditions

SEA is used to predict vibration and noise levels at the 
design stage. One should bear in mind that a shipyard-
constructed structure may exhibit variations, compared 
to the documentation. Sometimes, very small changes can 
cause a large impact on the subsystems’ vibration response, 
as shown in Figs. 7-8. Fig. 7 shows how the response of the 
system changes after introducing one more restraint point in 
a random place on each subsystem. At the statistical energy 
analysis stage, the stiffness of the connected structure may 
change and pillars/cutouts may appear. The best solution is 
to average the random spring stiffness and random SPCs. 
If any of these unknowns are eliminated, this part of the 
randomness can be removed from the procedure. In the cases 
described in this paper, the stiffness of the springs at the edges 
of the models was randomly selected in the range 70-130% 
of the mean value.
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Fig, 7. Displacement graph [mm], result of a steady state harmonic analysis 
in an exemplary frequency of 44 Hz, at which the influence of irregularity is 
clearly visible. On the left, there is one single point constraint in a random 

place for each subsystem. On the right, there are two single point constraints in 
a random place for each subsystem.

The scatter of CLF values, for one system with seven 
random boundary conditions, is shown in Fig. 8. 

 

 
Fig. 8. The coupling loss factors for seven boundary conditions and the averaged value 

Fig. 8 shows that a small change in the system can change the CLF value by two orders 
of magnitude. The dispersion of the results significantly decreases above the 250 Hz octave. 
 

CONCLUSIONS 
 

This paper presents a hybrid FEM/SEA method for estimating the CLF for complex 
structural joints found on ships. The results obtained with this method were compared to 
experimental results from two different papers. Acceptably good agreement with the 
measurement results was achieved. The presented method differs from previous solutions in the 
following ways: 
 

• The coefficients are averaged in the frequency domain and for various boundary 
conditions. This allows us to easily reject negative CLFs with minimal impact on the 
final result. 

• By using springs at the edges of the model, the influence of the adjacent structure can 
be taken into account. Random deviations in spring stiffness allow the result to be 
obtained more for the ensemble average than for the deterministic case. 

• Potential structural discontinuities or additional wave-scattering elements (such as 
pillars) are introduced into the system as point restraints in random places in the 
subsystem. 

• If the uncertainty associated with any of the above types of boundary conditions 
disappears, it can be removed from the analysis, making it more deterministic. 
 

Using a hybrid FEM/SEA method, a library of CLFs was created for the structural joints of 
a jack-up vessel (Appendix A). With the help of this library, one can create many SEA models 
of vibroacoustic paths on various ships. The presented method is universal and the library can 
be freely expanded. 
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Fig. 8 shows that a small change in the system can change 
the CLF value by two orders of magnitude. The dispersion of 
the results significantly decreases above the 250 Hz octave.

Conclusions

This paper presents a  hybrid FEM/SEA method for 
estimating the CLF for complex structural joints found on 
ships. The results obtained with this method were compared 
to experimental results from two different papers. Acceptably 
good agreement with the measurement results was achieved. 
The presented method differs from previous solutions in the 
following ways:
•	 The coefficients are averaged in the frequency domain 

and for various boundary conditions. This allows us to 
easily reject negative CLFs with minimal impact on the 
final result.

•	 By using springs at the edges of the model, the influence of 
the adjacent structure can be taken into account. Random 
deviations in spring stiffness allow the result to be obtained 
more for the ensemble average than for the deterministic 
case.

•	 Potential structural discontinuities or additional wave-
scattering elements (such as pillars) are introduced into 

the system as point restraints in random places in the 
subsystem.

•	 If the uncertainty associated with any of the above types of 
boundary conditions disappears, it can be removed from 
the analysis, making it more deterministic.
Using a hybrid FEM/SEA method, a  library of CLFs 

was created for the structural joints of a  jack-up vessel 
(Appendix A). With the help of this library, one can create 
many SEA models of vibroacoustic paths on various ships. 
The presented method is universal and the library can be 
freely expanded.
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Appendix A

Tab. 3 Description of subsystems included in the submodels

 Length [mm] Thickness [mm] Stiffener type

ID Lx Ly Lz Lx' Lz' P1 P2 P3 P4 P1 P2 P3 P4

1 2740 1500 - - - 10 10 - - FB10x100 HP120x6 - -

2 2740 1500 - - - 20 10 - - FB10x100 HP200x9 - -

3 1500 3500 1950 - 1950 8 10 8 - HP120x7 FB10x100 HP120x7 -

4 1500 3500 1950 - 1950 20 10 20 - HP200x9 FB10x100 HP200x9 -

5 1500 2640 1950 - 1950 20 12 20 - HP200x9 FB10x100 HP200x9 -

6 1500 2640 1950 - 1950 8 12 8 - HP120x7 FB10x100 HP120x7 -

7 1500 3500 1950 - 1950 9 10 9 - HP120x6 FB10x100 HP120x6 -

8 1950 2055 3700 - 3100 7 7 7 - HP120x7 HP100x8 HP120x7 -

9 1950 2055 1500 1950 2400 8 6 8 6 HP160x7 HP80x6 HP160x7 HP80x6

10 1500 3425 1950 2040 1950 8 10 8 8 HP120x7 FB10x100 HP120x7 HP160x7

11 1500 3425 1950 2040 1950 18 18 12 24 HP120x7 FB10x100 HP120x7 HP120x7

12 1500 3425 1950 2040 1950 8 10 8 8 HP120x6 FB10x100 HP120x7 HP160x7

13 1500 3425 1950 2040 1950 8 12 8 8 HP120x6 FB10x100 HP120x7 HP160x7
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Table 4 CLF values for selected junctions

ID Octave
Coupling loss factor [-]

1_2 2_1 1_3 2_3 3_2 3_1 1_4 2_4 3_4 4_1 4_2 4_3

1

63 1.2E-01 1.7E-01 - - - - - - - - - -

125 1.6E-02 1.2E-02 - - - - - - - - - -

250 1.4E-02 1.2E-02 - - - - - - - - - -

500 8.1E-03 7.1E-03 - - - - - - - - - -

1000 7.4E-03 5.8E-03 - - - - - - - - - -

2000 5.2E-03 4.0E-03 - - - - - - - - - -

2

63 9.5E-03 1.2E-02 - - - - - - - - - -

125 4.7E-03 6.1E-03 - - - - - - - - - -

250 3.5E-03 5.7E-03 - - - - - - - - - -

500 3.6E-03 5.7E-03 - - - - - - - - - -

1000 3.4E-03 4.7E-03 - - - - - - - - - -

2000 2.2E-03 3.1E-03 - - - - - - - - - -

3

63 4.1E-03 5.4E-03 2.0E-02 8.0E-03 6.7E-03 1.9E-02 - - - - - -

125 2.5E-03 4.4E-03 3.3E-02 7.7E-03 5.3E-03 3.3E-02 - - - - - -

250 3.2E-03 6.5E-03 6.4E-03 6.5E-03 3.4E-03 6.3E-03 - - - - - -

500 2.8E-03 4.4E-03 4.2E-03 4.4E-03 2.5E-03 4.3E-03 - - - - - -

1000 2.3E-03 4.0E-03 2.2E-03 4.0E-03 2.4E-03 2.2E-03 - - - - - -

2000 1.7E-03 2.8E-03 1.1E-03 2.7E-03 1.8E-03 1.1E-03 - - - - - -

4

63 2.6E-03 1.3E-03 7.2E-02 2.4E-03 2.9E-03 5.7E-02 - - - - - -

125 1.3E-03 6.8E-04 6.3E-02 8.0E-04 3.3E-03 6.3E-02 - - - - - -

250 2.1E-03 9.9E-04 3.4E-02 7.4E-04 1.6E-03 3.8E-02 - - - - - -

500 1.7E-03 1.0E-03 1.0E-02 8.5E-04 1.4E-03 1.1E-02 - - - - - -

1000 2.0E-03 1.1E-03 8.5E-03 9.4E-04 1.8E-03 9.2E-03 - - - - - -

2000 1.5E-03 8.4E-04 4.6E-03 7.8E-04 1.5E-03 4.5E-03 - - - - - -

5

63 4.8E-02 3.4E-02 4.9E-01 7.2E-03 1.5E-02 3.5E-01 - - - - - -

125 8.1E-03 3.1E-03 7.9E-02 5.9E-03 1.4E-02 1.1E-01 - - - - - -

250 5.7E-03 2.3E-03 3.1E-02 1.9E-03 1.8E-03 2.9E-02 - - - - - -

500 2.0E-03 1.7E-03 1.1E-02 1.6E-03 1.7E-03 1.1E-02 - - - - - -

1000 2.5E-03 1.9E-03 7.0E-03 2.0E-03 2.7E-03 8.2E-03 - - - - - -

2000 2.0E-03 1.3E-03 4.3E-03 1.2E-03 1.8E-03 4.2E-03 - - - - - -

6

63 8.5E-03 1.0E-02 1.3E-02 1.7E-02 7.0E-03 1.4E-02 - - - - - -

125 5.9E-03 7.4E-03 7.5E-03 7.9E-03 4.7E-03 1.0E-02 - - - - - -

250 2.4E-03 7.0E-03 4.2E-03 6.4E-03 2.6E-03 3.4E-03 - - - - - -

500 2.6E-03 6.2E-03 3.0E-03 6.5E-03 2.9E-03 3.1E-03 - - - - - -

1000 2.0E-03 4.0E-03 1.6E-03 3.9E-03 2.0E-03 1.7E-03 - - - - - -

2000 1.6E-03 3.0E-03 7.6E-04 3.0E-03 1.7E-03 7.5E-04 - - - - - -

7

63 4.6E-03 9.9E-03 2.0E-02 3.3E-03 4.1E-03 1.6E-02 - - - - - -

125 3.6E-03 5.5E-03 1.3E-02 6.4E-03 4.5E-03 1.4E-02 - - - - - -

250 4.3E-03 4.5E-03 6.7E-03 4.3E-03 2.8E-03 7.5E-03 - - - - - -

500 2.7E-03 4.5E-03 5.3E-03 4.5E-03 2.9E-03 5.6E-03 - - - - - -

1000 2.8E-03 4.0E-03 2.7E-03 3.9E-03 2.5E-03 2.5E-03 - - - - - -

2000 1.9E-03 2.7E-03 1.4E-03 2.6E-03 2.0E-03 1.5E-03 - - - - - -
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ID Octave
Coupling loss factor [-]

1_2 2_1 1_3 2_3 3_2 3_1 1_4 2_4 3_4 4_1 4_2 4_3

8

63 2.6E-03 5.4E-03 7.0E-03 7.7E-03 4.9E-03 1.0E-02 - - - - - -

125 2.3E-03 4.6E-03 3.6E-03 5.1E-03 2.7E-03 4.4E-03 - - - - - -

250 1.9E-03 4.3E-03 2.3E-03 3.2E-03 2.3E-03 4.1E-03 - - - - - -

500 2.1E-03 3.2E-03 1.7E-03 2.9E-03 2.2E-03 2.0E-03 - - - - - -

1000 1.2E-03 2.2E-03 1.0E-03 2.5E-03 1.7E-03 1.2E-03 - - - - - -

2000 7.4E-04 1.3E-03 6.0E-04 1.4E-03 9.2E-04 6.8E-04 - - - - - -

9

63 5.0E-03 3.8E-03 3.5E-02 1.3E-03 2.5E-03 2.5E-02 6.7E-03 4.7E-03 1.1E-03 8.6E-04 4.0E-03 2.5E-03

125 2.0E-03 1.5E-03 1.2E-02 1.3E-03 2.0E-03 6.0E-03 3.2E-03 2.1E-03 1.4E-03 1.6E-03 1.2E-03 1.6E-03

250 1.9E-03 1.3E-03 7.0E-03 1.3E-03 1.1E-03 4.6E-03 2.2E-03 1.5E-03 1.1E-03 1.1E-03 1.4E-03 1.7E-03

500 2.4E-03 1.4E-03 4.6E-03 1.3E-03 1.2E-03 2.5E-03 2.5E-03 1.2E-03 1.0E-03 9.2E-04 1.3E-03 1.3E-03

1000 1.7E-03 9.9E-04 3.3E-03 1.1E-03 1.1E-03 2.2E-03 1.7E-03 9.6E-04 5.6E-04 4.9E-04 1.2E-03 1.0E-03

2000 1.1E-03 6.1E-04 1.9E-03 6.2E-04 6.2E-04 1.0E-03 1.1E-03 5.6E-04 3.1E-04 2.9E-04 6.6E-04 5.9E-04

10

63 2.5E-03 3.4E-03 9.5E-03 3.9E-03 2.5E-03 8.9E-03 3.5E-03 4.5E-03 6.3E-03 4.2E-03 3.3E-03 4.4E-03

125 1.5E-03 3.6E-03 8.2E-03 2.9E-03 1.8E-03 8.7E-03 1.9E-03 2.6E-03 4.7E-03 2.8E-03 4.0E-03 4.2E-03

250 1.9E-03 3.1E-03 2.5E-03 3.3E-03 2.4E-03 2.8E-03 1.3E-03 1.7E-03 6.6E-03 3.4E-03 1.6E-03 2.2E-03

500 1.5E-03 2.3E-03 1.8E-03 2.4E-03 1.5E-03 2.1E-03 1.0E-03 1.2E-03 3.0E-03 2.4E-03 2.0E-03 2.3E-03

1000 1.7E-03 2.6E-03 1.3E-03 2.5E-03 1.4E-03 1.1E-03 8.6E-04 1.0E-03 2.0E-03 1.5E-03 1.3E-03 1.7E-03

2000 1.0E-03 1.8E-03 6.0E-04 1.6E-03 1.0E-03 6.5E-04 5.9E-04 6.6E-04 1.4E-03 9.5E-04 6.9E-04 7.7E-04

11

63 3.1E-03 4.0E-03 2.0E-02 1.5E-03 7.0E-04 1.9E-02 4.8E-02 4.4E-02 8.8E-03 4.7E-03 1.6E-02 7.4E-03

125 1.7E-03 8.5E-03 9.1E-03 3.0E-03 9.0E-04 6.2E-03 6.1E-02 5.9E-02 4.0E-03 7.6E-03 3.5E-02 4.1E-02

250 2.4E-03 3.6E-03 2.4E-03 1.6E-03 1.0E-03 2.2E-03 4.0E-03 5.4E-03 3.5E-03 6.0E-03 1.9E-03 4.6E-03

500 1.5E-03 2.4E-03 8.8E-04 1.0E-03 6.3E-04 5.9E-04 2.4E-03 3.8E-03 3.5E-03 3.4E-03 1.0E-03 2.3E-03

1000 1.3E-03 1.6E-03 6.4E-04 1.0E-03 4.6E-04 3.4E-04 3.0E-03 3.3E-03 3.0E-03 2.4E-03 9.7E-04 2.0E-03

2000 1.5E-03 2.1E-03 1.1E-03 1.0E-03 3.9E-04 5.8E-04 2.7E-03 3.3E-03 2.1E-03 1.9E-03 8.2E-04 1.5E-03

12

63 4.0E-03 8.4E-03 8.7E-03 2.0E-02 1.4E-02 5.8E-03 2.7E-03 1.4E-03 7.3E-03 3.2E-03 4.3E-03 8.0E-03

125 3.2E-03 4.4E-03 4.5E-03 4.3E-03 1.9E-03 4.8E-03 1.3E-03 1.6E-03 5.2E-03 3.3E-03 2.7E-03 2.8E-03

250 3.0E-03 5.2E-03 1.0E-03 3.9E-03 1.9E-03 7.4E-04 1.9E-03 2.2E-03 4.9E-03 2.2E-03 1.4E-03 2.0E-03

500 1.8E-03 2.9E-03 8.5E-04 4.4E-03 2.1E-03 7.7E-04 1.4E-03 1.4E-03 2.5E-03 1.3E-03 1.5E-03 1.8E-03

1000 2.0E-03 3.4E-03 1.1E-03 2.5E-03 1.1E-03 7.9E-04 7.6E-04 7.8E-04 2.2E-03 1.4E-03 1.1E-03 1.4E-03

2000 1.7E-03 2.8E-03 7.0E-04 2.0E-03 9.9E-04 5.8E-04 5.7E-04 5.5E-04 1.7E-03 8.5E-04 4.7E-04 5.2E-04

13

63 4.0E-03 8.4E-03 8.7E-03 2.0E-02 1.4E-02 5.8E-03 2.7E-03 1.4E-03 7.3E-03 3.2E-03 4.3E-03 8.0E-03

125 3.2E-03 4.4E-03 4.5E-03 4.3E-03 1.9E-03 4.8E-03 1.3E-03 1.6E-03 5.2E-03 3.3E-03 2.7E-03 2.8E-03

250 3.0E-03 5.2E-03 1.0E-03 3.9E-03 1.9E-03 7.4E-04 1.9E-03 2.2E-03 4.9E-03 2.2E-03 1.4E-03 2.0E-03

500 1.8E-03 2.9E-03 8.5E-04 4.4E-03 2.1E-03 7.7E-04 1.4E-03 1.4E-03 2.5E-03 1.3E-03 1.5E-03 1.8E-03

1000 2.0E-03 3.4E-03 1.1E-03 2.5E-03 1.1E-03 7.9E-04 7.6E-04 7.8E-04 2.2E-03 1.4E-03 1.1E-03 1.4E-03

2000 1.7E-03 2.8E-03 7.0E-04 2.0E-03 9.9E-04 5.8E-04 5.7E-04 5.5E-04 1.7E-03 8.5E-04 4.7E-04 5.2E-04


