Warianty tytułu
Języki publikacji
Abstrakty
Metallurgical industries incorporated into the living environment of the city cause significant enrichment of the topsoil with harmful substances including small size particulate matter, which contains heavy metals and magnetic iron oxides. The present study is focused on characterization of magnetic and geochemical pollution accumulated by urban soils in the city of Zaporizhzhia. Industrial dusts from the most powerful emmitants of airborne pollution are also analyzed. Two types of magnetic industrial emissions were discriminated to contribute in urban soil magnetization: spread of coarse-grained magnetite-bearing particles is limited to industrial zone, while smaller magnetic spherules were traced to settle far from the pollution sources bringing significant amounts of heavy metals to the soil. Magnetic susceptibility, saturation remanence and anhysteretic ratio of soil samples show strong relationship with heavy metals contents and pollution load index. Thus, magnetic parameters can serve as reliable proxies for complex urban and industrial pollution of soils. The obtained results provide important insight into magnetism and geochemistry of urban soils in Zaporizhzhia, characterizing the pollution rate as it was prior to the war situation starting in February 2022.
Czasopismo
Rocznik
Tom
Strony
1355--1375
Opis fizyczny
Bibliogr. 76 poz.
Twórcy
autor
- Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452 Warsaw, Poland, kbondar@igf.edu.pl
autor
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str., Kyiv 03022, Ukraine, irynatsiupa@knu.ua
autor
- Yuriy Fedkovych Chernivtsi National University, Kotsyubynsky Str., Chernivtsi 258012, Ukraine, an.sachko@chnu.edu.ua
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str., Kyiv 03022, Ukraine
autor
- State Scientific Institution “Center for Problems of Marine Geology, Geoecology and Sedimentary Ore Formation of the NAS of Ukraine”, 55-B, O. Honchar Str., Kyiv 03054, Ukraine, nasedevg@ukr.net
Bibliografia
- 1. Aidona E, Grison H, Petrovsky E, Kazakis N, Papadopoulou L, Voudouris K (2016) Magnetic characteristics and trace elements concentration in soils from Anthemountas River basin (North Greece): discrimination of different sources of magnetic enhancement. Environ Earth Sci 75:1375. https://doi.org/10.1007/ s12665-016-6114-3
- 2. Alekseev YuV (1987) Heavy metals in soils and plants. Ahropromizdat, Moscow
- 3. Angulo E (1996) The Tomlinson pollution load index applied to heavy metal ‘“Mussel-Watch”’ data: a useful index to assess coastal pollution. Sci Total Environ 187:19-56. https://doi.org/10.1016/ 0048-9697(96)05128-5
- 4. Ashraf I, Ahmad F, Sharif A et al (2021) Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Appl Sci 3:552. https://doi.org/10.1007/s42452-021-04547-y
- 5. Blundell A, Dearing JA, Boyle JF, Hannam JA (2009) Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci Rev 95(3-4):158-188. https://doi. org/10.1016/j.earscirev.2009.05.001
- 6. Bondar K, Tsyupa I, Stakhiv I (2015) Magnetic susceptibility of soils from Ukrainian cities and evaluation of pollution levels. Visnyk Taras Shevchenko Natl Univ Kyiv Geol 3(70):43-48. https://doi. org/10.17721/1728-2713.70.07
- 7. Bondar K, Kuraeva I, Voitiuk Y, Tsyupa I, Stakhiv I, Matvienko O, Kuz Y (2016) Complex ecological-geochemical assessment of territories with technogenic pollution. Mineral J 38(2):88-95. https:// doi.org/10.15407/mineraljournal.38.02.088
- 8. Bondar K, Sachko A, Tsiupa I (2020) Assessment of anthropogenic pollution of soils in Chernivtsi (Ukraine) by magnetic susceptibility and heavy metal content. Visnyk Taras Shevchenko Natl Univ Kyiv Geol 2(89):71-78. https://doi.org/10.17721/1728-2713.89. 10
- 9. Cao L, Appel E, Rösler W, Magiera T (2015) Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution. Geophys J Int 203(2):767-775. https://doi.org/10.1093/ gji/ggv318
- 10. Chaparro MAE, Bidegain JC, Sinito AM, Gogorza CS, Jurado S (2003) Magnetic studies applied to different environments (soils and stream-sediments) from a relatively polluted area in Buenos Aires Province, Argentina. Environ Geol 45(5):654-664. https:// doi.org/10.1007/s00254-003-0915-x
- 11. Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titano-magnetites: grain size and compositional dependence. Phys Earth Planet Inter 13:260-267. https://doi.org/10.1016/0031-9201(77) 90108-X
- 12. Dearing JA, Dann RJL, Hay K, Lees JA, Loveland PJ, Maher BA, O’Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124(1):228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
- 13. Declercq Y, Samson R, Castanheiro A, Spassov S, Tack FMG, Van De Vijver E, De Smedt P (2019) Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. Sci Total Environ 685:345-356. https://doi.org/10.1016/j.scitotenv. 2019.05.379
- 14. Dunlop DJ (1974) Thermal enhancement of magnetic susceptibility. J Geophys 40(1):439-451
- 15. Dunlop DJ (2002a) Theory and application of the day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomag-netite data. J Geophys Res 107(B3):2056. https://doi.org/10.1029/ 2001JB000486
- 16. Dunlop DJ (2002b) Theory and application of the day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils. J Geophys Res 107(B3):2057. https://doi.org/10.1029/2001J B000487
- 17. Dunlop D, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge
- 18. El-Hasan T, Lataifeh M (2013) Field and dual magnetic susceptibility proxies for heavy metal pollution assessment in the urban soil of Al-Karak City, South Jordan. Environ Earth Sci 69(7):2299-2310. https://doi.org/10.1007/s12665-012-2058-4
- 19. Evans ME, Heller F (2003) Environmental magnetism: principles and applications of enviromagnetics. Academic, San Diego
- 20. Eyre JK, Shaw J (1994) Magnetic enhancement of Chinese loess—The role of YFe2O3? Geophys J Int 117(1):265-271. https://doi.org/10. 1111/j.1365-246X.1994.tb03317.x
- 21. Fateiev AI, Pashchenko YV (2003) Background content of trace elements in soils of Ukraine. Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsky, Kharkiv, p 71 (In Ukrainian)
- 22. Fialova H, Maier G, Patrovsky E, Kapicka A, Boyko T, Scholger R, Magprox Team (2006) Magnetic properties of soils from sites with different geological and environmental settings. J Appl Geophys 59:273-283. https://doi.Org/10.1016/j.jappgeo.2005.10.006
- 23. Gehring U, Fischer H, Louvel M, Kunze K, Weidler PG (2009) High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophys J Int 179(3):1361-1371. https://doi.org/ 10.1111/j.1365-246X.2009.04348
- 24. Górka-Kostrubiec B, Teisseyre-Jelenska M, Dytłow SK (2016) Magnetic properties as indicators of Chernozem soil development. CATENA 138:91-102. https://doi.org/10.1016/j.catena.2015.11. 014
- 25. Górka-Kostrubiec B, Magiera T, Dudzisz K, Dytłow S, Wawer M, Winkler A (2020) Integrated magnetic analyses for the discrimination of urban and industrial dusts. Minerals 10(12):1056. https://doi. org/10.3390/min10121056
- 26. Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ Geol 42(8):857-870. https://doi.org/10.1007/s00254-002-0604-1
- 27. Hanesch M, Stanjek H, Petersen N (2006) Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophys J Int 165(1):53-61. https://doi.org/10.1111/j.1365-246X.2006. 02933.x
- 28. IBM (2021) KMO and Bartlett’s test. Available from https://www. ibm.com/docs/en/spss-statistics/26.0.0?topic=detection-kmo-bartletts-test
- 29. Jabłońska M, Rachwał M, Wawer M, Kądziołka-Gaweł M, Teper E, Krzykawski T, Smołka-Danielowska D (2021) Mineralogical and chemical specificity of dusts originating from iron and non-ferrous metallurgy in the light of their magnetic susceptibility. Minerals 11:216. https://doi.org/10.3390/min11020216
- 30. Jackson JM, Moskowitz B (2021) On the distribution of Verwey transition temperatures in natural magnetites. Geophys J Int 224(2):1314-1325. https://doi.org/10.1093/gji/ggaa516
- 31. Jeleńska M, Hasso-Agopsowicz A, Kopcewicz B, Sukhorada A, Tyam-ina K, Kadziałko-Hofmokl M, Matviishina Z (2004) Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine. Geophys J Int 159(1):104-116. https:// doi.org/10.1111/j.1365-246x.2004.02370.x
- 32. Jeleńska M, Hasso-Agopsowicz A, Kądziałko-Hofmokl M, Kopcewicz B, Sukhorada A, Bondar K, Matviishina Zh (2008a) Magnetic structure of polluted soil profiles from Eastern Ukraine. Acta Geophys 49:1012-1033. https://doi.org/10.2478/s11600-008-0036-8
- 33. Jeleńska M, Hasso-Agopsowicz A, Kądziałko-Hofmokl M, Sukho-rada A, Bondar K, Matviishina Zh (2008b) Magnetic iron oxides occurring in chernozem soil from Ukraine and Poland as indicators of pedogenic processes. Stud Geophys Geod 52(2):255-270. https://doi.org/10.1007/s11200-008-0017-z
- 34. Jolliffe I (2002) Principal component analysis, 2nd edn. Springer, New York
- 35. Jordanova N (2016) Soil magnetism, 1st edn. Academic Press, Cambridge
- 36. Jordanova D, Jordanova N (2016) Thermomagnetic behavior of magnetic susceptibility heating rate and sample size effects. Front Earth Sci 3:90. https://doi.org/10.3389/feart.2015.00090
- 37. Jordanova NV, Jordanova DV, Veneva L, Yorova K, Petrovsky E (2003) Magnetic response of soils and vegetation to heavy metal pollution. A case study. Environ Sci Technol 37(19):4417-4424. https://doi.org/10.1021/es0200645
- 38. Jordanova D, Jordanova N, Lanos P, Petrov P, Tsacheva T (2012) Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochem Geophys Geosyst 13(8):Q08Z49. https://doi.org/10.1029/2012GC004160
- 39. Kabata-Pendias A, Pendias H (2001) trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton
- 40. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141-151. https://doi.org/10. 1177/001316446002000116
- 41. King J, Banerjee SK, Marvin J, Özdemir Ö (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet Sci Lett 59(2):404-419. https://doi.org/ 10.1016/0012-821X(82)90142-X
- 42. Kreshkov AP (1976). Fundamentals of analytical chemistry. Theoretical basis. Quantitative analysis. Chemistry, Moscow [in Russian]
- 43. Liu Q, Roberts AP, Larrasoana JC, Banerjee SK, Guyodo Y, Tauxe L et al (2012) Environmental magnetism: principles and applications. Rev Geophys 50:RG4002. https://doi.org/10.1029/2012r g000393
- 44. Lopez-Sanchez J, McIntosh G, Osete ML, del Campo A, Villalain JJ, Perez L, Kovacheva M, Rodriguez de la Fuente O (2017) Epsilon iron oxide: origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials. Geo-chem Geophys Geosyst. https://doi.org/10.1002/2017GC006929
- 45. Lu SG, Bai SQ (2006) Study on correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J Appl Geophys 60:1-12. https://doi.org/10.1016/j.jappgeo.2005. 11.002
- 46. Lu S, Yu X, Chen Y (2016) Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: their source identification and environmental implications. Sci Total Environ 543:230-247. https://doi.org/10.1016/j. scitotenv.2015.11.046
- 47. Magiera T, Strzyszcz Z, Rachwal M (2007) Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region. Poland for Ecol Manag 248(1-2):36-42. https://doi.org/10.1016/j.foreco.2007.02.034
- 48. Magiera T, Jabłonska M, Strzyszcz Z, Rachwal M (2011) Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ 45:4281e4290. https://doi.org/10. 1016/j.atmosenv.2011.04.076
- 49. Magiera T, Górka-Kostrubiec B, Szumiata T et al (2021) Technogenic magnetic particles from steel metallurgy and iron mining in topsoil: indicative characteristic by magnetic parameters and Mössbauer spectra. Sci Total Environ 775:145605. https://doi.org/10. 1016/j.scitotenv.2021.145605
- 50. Maher BA, Thompson R (1999) Quaternary climates, environments and magnetism. University Press, Cambridge
- 51. Muxworthy AR, Schmidbauer E, Petersen N (2002) Magnetic properties and Mossbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany. Geophys J Int 150(2):558-570. https://doi.org/10.1046/j.1365-246X.2002. 01725.x
- 52. Özdemir Ö, Banerjee SK (1984) High temperature stability of maghemite (Y—Fe2O3). Geophys Res Lett 11:161-164. https://doi.org/ 10.1029/GL011i003p00161
- 53. Özdemir Ö, Dunlop DJ (2010) Hallmarks of maghemitization in low-temperature remanence cycling of partially oxidized magnetite nanoparticles. J Geophys Res. https://doi.org/10.1029/2009J B006756
- 54. Özdemir Ö, Dunlop DJ, Moskowitz BM (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20:1671-1674. https://doi.org/10.1029/93GL01483
- 55. Peters C, Dekkers MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth 28(16-19):659-667. https://doi.org/10. 1016/S1474-7065(03)00120-7
- 56. Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified FeO nanoparticles in sand columns. Environ Sci Technol 43(13):5079-5085. https:// doi.org/10.1021/es900171v
- 57. Program of economic and social development of Zaporizhzhia urban territorial community for 2023 year (2022) Strategic Environmental Assessment Report. App. 4:53. Available from https://zp.gov. ua/upload/editor/zvit_seo_2023_1.pdf
- 58. Shen L, Qiao Y, Guo Y, Zhao J (2013) Synthesis and magnetic properties of Fe3O4 nanoparticles from the blast furnace flue dust. Optoelectron Adv Mater Rapid Commun 7(7-8):525-529
- 59. Stakhiv I, Tsiupa I, Bondar К, Korol A (2017) Magnetic susceptibility as indicator of vehicle pollution of the topsoil in Odesa city. Vis-nyk Taras Shevchenko Natl Univ Kyiv Geol 3(78):46-50. https:// doi.org/10.17721/1728-2713.78.06
- 60. Strzyszcz Z, Magiera T (1998) Magnetic susceptibility and heavy metals contamination in soils of Southern Poland. Phys Chem Earth 23:1127-1131. https://doi.org/10.1016/S0079-1946(98)00140-2
- 61. Strzyszcz Z, Magiera T, Heller F (1996) The influence of industrial emmissions on the magnetic susceptibility of soils in upper Silesia. Stud Geophys Geod 40(3):276-286. https://doi.org/10.1007/ BF02300743
- 62. Sukhorada A, Bondar K, Jeleńska M, Hasso-Agopsowicz A, Kądziałko-Hofmokl M, Matviishina Zh (2004) Spatial distribution of ferrimagnetic pollution from iron-ore open-cast mines and metallurgical enterprises of Kryvyi Rig and Mariupol. Contrib Geophys Geod 34:145-146
- 63. Szumiata T, Rachwał M, Magiera T, Brzózka K, Gzik-Szumiata M, Gawro'nski M, Górka B, Kyzioł-Komisi'nska J (2017) Iron-containing phases in metallurgical and coke dust as well as in bog iron ore. Nukleonika 62(2):187-195. https://doi.org/10.1515/ nuka-2017-0029
- 64. Szuszkiewicz M, Magiera T, Kapička A, Petrovský E, Grison H, Gołuchowska B (2015) Magnetic characteristics of industrial dust from different sources of emission: a case study of Poland. J Appl Geophys 116:84-92. https://doi.org/10.1016/j.jappgeo. 2015.02.027
- 65. Szuszkiewicz M, Łukasik A, Magiera T, Mendakiewicz M (2016) Combination of geo-pedo- and technogenic magnetic and geochemical signals in soil profiles-diversification and its interpretation: a new approach. Environ Pollut 214:464-477. https://doi.org/ 10.1016/j.envpol.2016.04.044
- 66. Thompson R, Oldfield F (1986) Environmental magnetism. Allen & Unwin, Springer, London. https://doi.org/10.1007/ 978-94-011-8036-8
- 67. Tomlinson DL, Wilson JG, Harris CR, Jeffney DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Mar Res 33(1):566-572. https:// doi.org/10.1007/BF02414780
- 68. Tóth G, Hermann T, da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299-309. https://doi.org/10.1016/j. envint.2015.12.017
- 69. Tsvetkova NN, Dubina AA (2008) Manganese concentration in urban soils of industrial cities from steppe Dnipro river region. Visnyk Dnipropetr Univ Biol Ecol 16(1):204-209. https://doi.org/10. 15421/010834
- 70. Tureková I, Mračková E, Marková I (2019) Determination of waste industrial dust safety characteristics. Int J Environ Res Public Health 16(12):2103. https://doi.org/10.3390/ijerph16122103
- 71. Zaporizhzhia Development Strategy until 2028 (2017). https://zp.gov.
- 72. ua/upload/editor/zaporizhia_strategy_eng_by_pages.pdf
- 73. Zhang Q, Appel E (2023) Reversible thermal hysteresis in heatingcooling cycles of magnetic susceptibility: a fine particle effect of magnetite. Geophys Res Lett 50:e2023GL102932. https://doi.org/ 10.1029/2023GL102932
- 74. Zhang Ch et al (2011) Metallurgical resource comprehensive utilization. Metallurgical Industry Press, Beijing, pp 17-125
- 75. Zhang Ch, Er A, Qiao Q (2013) Heavy metal pollution in farmland irrigated with river water near a steel plant—magnetic and geochemical signature. Geophys J Int 192(3):963-974. https://doi. org/10.1093/gji/ggs079
- 76. Zong Y, Xiao Q, Lu S (2017) Magnetic signature and source identification of heavy metal contamination in urban soils of steel industrial city, Northeast China. J Soils Sediments 17:190-203. https://doi. org/10.1007/s11368-016-1522-2
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cfe33f07-7928-422e-9207-e430109156d8