Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 19, no. 2-3 | 107--117
Tytuł artykułu

Analysis of the Granular Material Concentration Changes During Silo Discharging Process Based on X-Ray Image Analysis

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper is presented methodology of the X-ray image processing application to investigate gravitational flow in rectangular silo model. The proposed normalization procedure of X-ray data allows to visualize the changes of the volume fraction of sand during silo discharging process. The applied procedure of image processing, in contrast to the previously author works, allows to obtained more accurate information about the changes of material distribution level during process. The conducted image analysis simplifies the investigation of mass flow in various area of silo. The obtained results show the different particle behaviour in centre and at silo wall area. The experiments were conducted for different initially level of sand densities and roughness of the silo wall. Visualization of dissimilarity in interaction between the particles and particles, and between particles and the silo walls, even for smooth wall, was the main result of the Xray image analysis, especially for shear zone visualization.
Słowa kluczowe
Wydawca

Rocznik
Strony
107--117
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Institute of Applied Computer Science, Lodz University of Technology
Bibliografia
  • [1] Babout, L., Grudzien, K., Maire, E., Withers, P.J. (2013). Influence of wall roughness and packing density on stagnate zone formation during funnel flow discharge from a silo: An X-ray imaging study, Chemical Engineering Science, 97, 210-224 [Web of Science]
  • [2] Babout, L., Marrow, T.J., Mummery, P.M., Marsden, B.J. (2008). Three -dimensional characterization and thermal property modeling of thermally oxidized nuclear graphite, Acta Materialia, 9, 4242-4254 [Web of Science] [CrossRef]
  • [3] Brown, C.J., Nielsen, J. (1998). Silos: fundamentals of theory, behavior, and design, E-FN Spon, 856
  • [4] Buffiere, J-Y., Maire, E., Adrien, J., Masse, J.-P., Boller, E. (2010). In Situ Experiments with X ray Tomography: An Attractive Tool for Experimental Mechanics, Experimental Mechanics, 50, 289-305 [Web of Science]
  • [5] Drescher, A. (1992). On the criteria for mass flow in hoppers, Powder Technology, 73, 251-260
  • [6] Drescher, A., Cousens, T.W., Bransby, T.P.L. (1978). Kinematics of the mass flow of granular material through a plane hopper, Geotechnique 28, 1, 27-42
  • [7] Dyakowski, T., Jeanmeure, L.F.C., Jaworski, A.J. (2000). Applications of electrical tomography for gas-solids and liquid-solids flows-a review, Powder Technology, 112, 174-192
  • [8] Eckart, W., Nicholas, J.M., Gray, T., Hutter, K. (2003). PIV for granular avalanches on inclined planes. Dynamical Response of Granular and Powder Materials in Large and Catastrophic Deformations (eds. K. Hutter and N. Kirchner), Lecture Notes in Applied and Computational Mechanics, 11, 195-219, Springer Verlag [CrossRef]
  • [9] Froystein, T. (1993). Gamma-ray flow imaging, PhD thesis, Department of Physics University of Bergen
  • [10] Grudzien, K. (2012). Radiography Image Processing for Analysis of Gravitational Funnel Flow in Silo, Computer Science in Novel Applications, 137-158
  • [11] Grudzien, K., Gonzales, M. (2013). Detection of tracer particles in tomography images foranalysis of gravitational flow in silo, Image Processing and Communications, 18, 11-22
  • [12] Grudzien, K., Niedostatkiewicz, M., Jerome, A., Maire, E., Babout, L. (2012). Analysis of the bulk solid flow during gravitational silo emptying using X-ray and ECT tomography, Powder Technology, 224, 196-208 [Web of Science]
  • [13] Grudzien, K., Niedostatkiewicz, M., Jerome, A., Tejchman, J., Maire, E. (2010). Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography, Chemical Engineering and Processing, 50, 59-67 [Web of Science]
  • [14] Hammer, E. (2009). The basic principle of gamma ray measurements, Seminar materials, http://www.kis.p.lodz.pl
  • [15] Kaestner, A., Lehmann, E., Stampanoni, E. (2008). Imaging and image processing in porous media research, Advances in Water Resources, 31, 1174-1187 [Web of Science]
  • [16] Kozicki, J., Tejchman, J., Mroz, Z. (2012). Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM, Granular Matter, 14, 457-468
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cfdbc112-a1ee-4ede-b84b-d39236705172
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.