Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 1, no. 1 | 503--510
Tytuł artykułu

Structure Stability of Georgian Natural Heulandite

Treść / Zawartość
Warianty tytułu
PL
Stabilność struktury gruzińskiego naturalnego heulandytu
Języki publikacji
EN
Abstrakty
EN
Zeolites have a unique set of molecular-sieve, sorption, ion exchange and catalytic properties due to their framework microporous structure, and structural stability is an important characteristic and often a decisive factor in the application and performance of natural zeolites. The aim of our work was to study the processes occurring under the influence of heat, which determine the thermal stability of the zeolite-containing tuff of the Tedzami-Dzegvi deposit, with zeolite phase content up to 90%, consisting of heulandite and chabazite in a ratio of 8:1, and chemical composition |Na0.25K0.06Ca0.19Mg0.15|[AlSi3.6O9.2] .3H2O. It was found that as a result of exposure to heat, a slight dealumination of the surface of the calcined (400-500 °C) samples occurs, as well as dehydration and amorphization of the crystal structure are observed. Sample dehydration occurs in several stages: (i) most of the water (≈60% of the total water content) is continuously lost at temperatures below ≈250 °C, (ii) the part of the remainder (≈24%) is slowly dehydrated up to 650 °C, (iii) complete dehydration of the sample is achieved at ≈800 oC. Amorphization of the heulandite phase begins at temperatures above 200 °C, the transition to the metastable heulandite B phase at ≈340 oC is not fixed, but at high temperatures wairakite or another mineral of the 9.GB.05 group and quartz are formed; the chabazite phase is stable up to ≈1000 oC, and at temperatures above 1100 oC, leucite (K,Na)AlSi2O6 and cristobalite SiO2 are formed. The adsorption of water vapor and benzene on heat-treated samples decreases monotonically with an increase in the calcination temperature, following amorphization. Nitrogen adsorption-desorption isotherms show slight decrease of the absorbent surface area with an increase in the calcination temperature and nonmonotonic changes in average mesopore diameters. It is also shown that heat treatment improves the acid resistance of heulandite by reducing dealumination after sample treatment with hydrochloric acid.
Wydawca

Rocznik
Strony
503--510
Opis fizyczny
Biblior. 14 poz., tab., wykr.
Twórcy
  • Georgian National Academy of Sciences, 52, Rustaveli Ave., 0108, Tbilisi, Georgia, vladimer.tsitsishvili@tsu.ge
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia, nanuli.dolaberidze@tsu.ge
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia, nato.mirdzveli@tsu.ge
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia, manana.nijaradze@tsu.ge
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia, zurab.amiridze@tsu.ge
  • Petre Melikishvili Institute of Physical and Organic Chemistry, I.Javakhishvili Tbilisi State University, 31 A.Politkovskaia Str., 1086 Tbilisi, Georgia, bela.khutsishvili@tsu.ge
Bibliografia
  • 1. G. W. Hardi, M. A. J. Maras, Y. R. R. Riva, and S. F. Rahman, “A review of natural zeolites and their applications: Environmental and industrial perspectives. International Journal of Applied Engineering Research,” vol. 15(7), pp. 730-734, 2020.
  • 2. Y. Li, and J. Yu, “Emerging applications of zeolites in catalysis, separation and host–guest assembly,” Nature Reviews Materials, vol. 6, pp. 1156–1174, 2021.
  • 3. B. Ma, and B. Lothenbach, “Synthesis, characterization, and thermodynamic study of selected K-based zeolites”, Cement Concrete Res., vol. 148, # 106537, pp. 1-18, 2021.
  • 4. A. Grela, J. Kuc, and T. Bajda, “A review of the application of zeolites and mesoporous silica materials in the removal of non-steroidal anti-flammatory drugs and antibiotics from water”, Materials, vol. 14(17), #4994, pp. 1-24, 2021.
  • 5. M. Koizumi, “The differential thermal analysis curves and the dehydration curves of zeolites”, Mineralogical J., vol. 1(1), pp. 36-47, 1953.
  • 6. F. A. Mumpton, “Clinoptilolite redefined”, Amer. Mineral., vol. 45, pp. 351-369, 1960.
  • 7. F. Pechar, and D. Rykl, “Study of the thermal stability of the natural zeolite heulandite”, Chem. Pap., vol 39(3), pp. 369-377, 1985.
  • 8. V. Tsitsishvili, M. Panayotova, M. Miyamoto, N. Dolaberidze, N. Mirdzveli, M. Nijaradze, Z. Amiridze, N. Klarjeishvili, B. Khutsishvili, N. Dzhakipbekova, L. Harutyunyan, “Characterization of Georgian, Kazakh and Armenian natural heulandite-clinoptilolites”, Bull. Georg. Natl Acad. Sci., vol. 16(4), pp. 115–122, 2022.
  • 9. Ch. Baerlocher, L. B. McCusker, and D. H. Olson (eds.), “Atlas of zeolite framework types,” Elsevier, Amsterdam, 2007.
  • 10. G. V. Tsitsishvili, T. G. Andronikashvili, G. N. Kirov, and L. D. Filizova, “Natural zeolites,” Ellis Horwood, Chichester (UK), 1992.
  • 11. M. M. J. Treacy, and J. B. Higgins (eds.), “Collection of simulated XRD powder patterns for zeolites,” Elsevier, Amsterdam, 2001.
  • 12. L. Dang, S. Le, R. Lobo, and T. Pham, “Hydrothermal synthesis of alkali-free chabazite zeolites,” J. Porous Mat., vol 27, pp. 1481-1489, 2020.
  • 13. S. Yamaka, P. B. Malla, and S. Komarnani, “Water sorption and desorption isotherms of some naturally occurring zeolites,” Zeolites, vol. 9(1), pp. 18-22, 1989.
  • 14. V. Tsitsishvili, N. Dolaberidze, N. Mirdzveli, M. Nijaradze, N. Dzhakipbekova, L. Harutyunyan, Z. Amiridze, and B. Khutsishvili, “Acid treatment of Georgian, Kazakhstani and Armenian natural heulandite-clinoptilolites”, 1st Int. Sci. Pract. Conf. “Sci.: Devel. Fact. Infl.”, InterConf, vol. 138, pp. 363-370, 2022
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cf8dad28-043a-483d-a8f1-e424f1ed911e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.