Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 4 | 847--853
Tytuł artykułu

Evaluation of post weld heat treatment quality of modified 9Cr–1Mo (P91) steel weld by magnetic coercive force measurements

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel technique for evaluation of quality of post weld heat treatment (PWHT) of modified 9Cr–1Mo (P91) steel weld by correlation with its magnetic coercive force (MCF). The MCF of modified 9Cr–1Mo steel was studied in respect of different PWHT cycles involving ordered variations of soaking temperature unto 770 °C and soaking time unto 140 min. It was observed that MCF of the weld metal reduced with increase in both the soaking temperature and soaking time of PWHT. The drop in MCF of welds after PWHT was found to be dependent on the drop in the hardness of the weld and on the degree of carbide precipitations seen in the weld microstructure. Based on the study, a criterion was evolved for evaluation of heat treatment quality of the weld.
Wydawca

Rocznik
Strony
847--853
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Welding Research Institute, High Pressure Boiler Plant, Bharat Heavy Electricals Limited, Tiruchirappalli, Tamilnadu 620014, India, sudharsan@bheltry.co.in
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
autor
  • Welding Research Institute, High Pressure Boiler Plant, Bharat Heavy Electricals Limited, Tiruchirappalli, Tamilnadu 620014, India
  • Welding Research Institute, High Pressure Boiler Plant, Bharat Heavy Electricals Limited, Tiruchirappalli, Tamilnadu 620014, India
Bibliografia
  • [1] V.K. Sikka, C.T. Ward, K.C. Thomas, Modified 9Cr–1Mo steel – an improved alloy for steam generator application, in: Proc. International Conf. on Ferritic Steels for High Temperature Applications, 1983.
  • [2] C. Coussement, A. Dhooge, High temperature properties of improved 9% Cr steel weldments, International Journal of Pressure Vessels and Piping 45 (2) (1991) 163–178.
  • [3] M.J. Cohn, J.F. Henry, D. Nass, Fabrication, construction, and operation problems for grade 91 fossil power components, Journal of Pressure Vessel Technology 127 (2) (2004) 197–203.
  • [4] American Society of Mechanical Engineers (ASME), ASME Boiler and Pressure Vessel Code – VIII, Rules for Construction of Pressure Vessels, Division 1, 2013 ed., The American Society of Mechanical Engineers, New York, 2013.
  • [5] M.Z. Hamzah, M.L. Ibrahim, Q.H. Chye, B. Ahmad, J.I. Inayat- Hussain, J. Purbolaksono, Evaluation on the hardness and microstructures of T91 reheater tubes after post-weld heat treatment, Engineering Failure Analysis 26 (2012) 349–354.
  • [6] D. Buzza, P91 piping fabrication guidelines, in: American Electric Power Combined Cycle user's Conference, USA, 2013, Available from: http://ccusers.org/wp-content/uploads/2012/ 04/111031_CCUG_P91_Fabrication_Guidelines_Dave_Buzza-1. pdf (accessed: 05 May).
  • [7] R.L. Klueh, J.P. Shingledecker, Investigation of a Modified 9Cr– 1Mo (P91) Pipe Failure, ORNL/TM-2006/1, Oak Ridge National Laboratory, Tennessee, 2006.
  • [8] R.W. Anderson, Special workshop explores P91/T91 issues, impending ASME Code changes, Combined Cycle Journal (Third Quarter) (2005) 2–10.
  • [9] D.C. Jiles, Magnetic properties and microstructure of AISI 1000 series carbon steels, Journal of Physics D: Applied Physics 21 (1988) 1186–1195.
  • [10] D.C. Jiles, The effect of compressive plastic deformation on the magnetic properties of AISI 4130 steels with various microstructures, Journal of Physics D: Applied Physics 21 (1988) 1196–1204.
  • [11] J.W. Byeon, S.I. Kwun, Magnetic evaluation of microstructures and strength of eutectoid steel, Materials Transactions 44 (10) (2003) 2184–2190.
  • [12] N. Karimian, J.W. Wilson, W. Yin, J. Liu, C.L. Davis, A.J. Peyton, Magnetic sensing for microstructural assessment of power station steels: differential permeability and magnetic hysteresis, Journal of Physics: Conference Series 450 (1) (2013) 012042.
  • [13] K. Gurruchaga, A. Martínez-De-Guerenu, F. Arizti, Monitoring recovery and recrystallization in interstitial free (IF) steel by magnetic hysteresis loop measurements, in: Proc. European Conf. on NDT (ECNDT), 2006.
  • [14] S.M. Thompson, P.J. Allen, B.K. Tanner, Magnetic properties of welds in high-strength pearlitic steels, IEEE Transactions on Magnetics 26 (5) (1990) 1984–1986.
  • [15] M.K. Devine, The magnetic detection of material properties, JOM, Journal of the Minerals Metals & Materials Society (TMS) 44 (10) (1992) 24–30.
  • [16] M. Sireesha, S.K. Albert, S. Sundaresan, Microstructure and mechanical properties of weld fusion zones in modified 9Cr– 1Mo steel, Journal of Materials Engineering and Performance 10 (3) (2001) 320–329.
  • [17] Q. Gao, X. Di, Y. Liu, Z. Yan, Recovery and recrystallization in modified 9Cr–1Mo steel weldments after post-weld heat treatment, International Journal of Pressure Vessels and Piping 93 (2012) 69–74.
  • [18] C.R. Das, S.K. Albert, A.K. Bhaduri, G. Srinivasan, B.S. Murty, Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr–1Mo steel weld joints, Materials Science and Engineering A 477 (2008) 185–192.
  • [19] A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, P.J. Ennis, Modified 9% Cr steels for advanced power generation: microstructure and properties, Journal of Achievements in Materials and Manufacturing Engineering 19 (2) (2006) 43–48.
  • [20] H. Kumar, J.N. Mohapatra, R.K. Roy, Evaluation of tempering behaviour in modified 9Cr–1Mo steel by magnetic non- destructive techniques, Journal of Materials Processing Technology 210 (4) (2010) 669–674.
  • [21] A. Martínez-de-Guerenu, K. Gurruchaga, F. Arizti, Use of magnetic techniques for characterisation of the microstructure evolution during the annealing of low carbon steels, in: Proc. European Conf. on NDT (ECNDT), 2006.
  • [22] J.D. Parker, K. Coleman, J. Henry, W. Liu, G. Zhou, Guidelines and Specifications for High-Reliability Fossil Power Plants: Best Practice Guideline for Manufacturing and Construction of Grade 91 Steel Components 1023199, Electric Power Research Institute, California, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cf7d64e2-9ba2-47d6-8d5f-9b6e4f69fc71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.