Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 17, nr 1-2 | 217--220
Tytuł artykułu

The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters. Thus, a thermal analysis cooling curve of the alloy is used for process control in the aluminum casting industry. In this work effect of cooling rate on the size of the grains, SDAS, size of the β precipitation and thermal characteristic results of AC AlSi9Cu cast alloy have been described. The solidification process was studied using the cooling curve and crystallization curve at solidification rate ranging from 0,16 ºCs-1 up to 1,04 ºCs-1 Design/methodology/approach: The experimental alloy used in this investigation was prepared by mixing the ACAlSi5Cu commercial alloys and two master alloys AlSi49 and AlCu55. Thermal analysis tests were conducted using the UMSA Technology Platform. Cooling curve thermal analysis was performed on all samples using high sensitivity thermocouples of K type. Data were acquired by a high speed data acquisition system linked to a PC computer. Each chilled sample was sectioned horizontally where the tip of the thermocouple was located and it was prepared by standard grinding and polishing procedures. Optical microscopy was used to characterize the microstructure and intermetallic phases. Secondary Dendrite Arm Spacing measurements were carried out using an Leica Q-WinTM image analyzer. Findings: Increasing the cooling rate increases significantly the liquidus temperature, nucleation undercooling temperature, solidification range and decreases the recalescence undercooling temperature. Increasing cooling rate refines all microstructural features. Research limitations/implications: This paper presents results for one alloy - AC AlSi9Cu only, for the assessment of the Silicon Modification Level didn’t include the arrangement of a Si crystal in a matrix. Originality/value: Original value of the work is applied the artificial intelligence for the assessment of the Silicon Modification Level.
Wydawca

Rocznik
Strony
217--220
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Division of, Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland , leszek.dobrzanski@polsl.pl
autor
  • Division of, Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Industrial Research Chair in Light Metals Casting Technology, University of Windsor, 401 Sunset Ave., N9B 3P4, Windsor, Ontario, Canada
Bibliografia
  • [1] J.G. Kauffman, E.L. Rooy: Aluminum Alloy Castings, ASM International, Ohio 2005.
  • [2] S.G. Shabestari, M. Malekan: Thermal Analysis Study of the Effect of the Cooling Rate on the Microstructure and Solidification Parameters of 319 Aluminum Alloy, Canadian Metallurgical Quarterly, Vol 44, 2005.
  • [3] L.A. Dobrzański, W. Kasprzak, J Sokołowski, R. Maniara, M. Krupiński: Applications of the derivation analysis for assessment of the ACAlSi7Cu alloy crystallization process cooled with different cooling rate, COMMENT 2005, Proceedings of the 13th International Scientific Conference, Gliwice-Wisła, 2005.
  • [4] L.A Dobrzański, K. Labisz, R. Maniara: „Microstructure investigation and hardness measurement in Al-Ti alloy with additions of Mg after heat treatment”, COMMENT 2005, Proceedings of the 13th International Scientific Conference, Gliwice-Wisła, 2005.
  • [5] R. MacKay, M. Djurdjevic, J. H. Sokolowski: The Effect of Cooling Rate on the Fraction Solid of the Metallurgical Reaction in the 319 Alloy, AFS Transaction, 2000.
  • [6] C. H Cáceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski: Cast Al: The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys, Scripta Materiala, 1999.
  • [7] J. M. Boileau, J. W. Zindel and J. E. Allison: The Effect of Solidification Time on the Mechanical Properties in a Cast A356-T6 Aluminum Alloy, Society of Automotive Engineers, Inc., 1997.
  • [8] A. M. Samuel, A. Gotmare, F. H. Samuel: Effect of Solidification Rate and Metal Feedability on Porosity and SiC/Al2O3 Particle Distributing in an Al-Si-Mg (359) Alloy, Composite Science and Technology, 1994.
  • [9] L. Bäckerud, E. Król, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1, Universitetsforlaget, Oslo, 1986.
  • [10] L. Bäckerud, G. Chai, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2, AFS, 1992.
  • [11] L. Bäckerud, G. Chai: Solidification Characteristics of Aluminum Alloys, Vol. 3, AFS, 1992.
  • [12] American Foundry Society, (AFS): Chart for Microstructure Control in Hypoeutectic Aluminum Silicon Alloys, American Foundry Society, Inc., Des Plaines, Illinois.
  • [13] Modification rating System for Structure of Hypoeutectik Aluminium Silicon Casting Alloys, KBI Aluminium Master Alloys Product Literature.
  • [14] K. Radhakrishna, S. Seshan and M.R. Seshadri: Dendrite Arm Spacing in Aluminum Alloy Casting, AFS Transactions, Vol. 88, 1980.
  • [15] http://www.uwindsor.ca/umsa.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cf53a1c8-8729-48db-b808-291d199eef49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.