Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 24, no. 3 | 181--198
Tytuł artykułu

Flexural stability analysis of stiffened plates using the finite element method

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A four-noded stiffened plate element has been developed which has all the advantages and efficiency of an isoparametric element to model arbitrary shaped plates, but without the disadvantage of the shear-locking problem inherent in the isoparametric element. Another unique feature is that the arbitrary placement of the stiffener inside the plate element is without any restriction of its orientation. The boundary conditions have been incorporated in a general manner so as to accommodate the curved as well as the straight-edged boundaries. The element has been used for stability analysis of arbitrary shaped stiffened plates.
Wydawca

Rocznik
Strony
181--198
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering National Institute of Technology Rourkela, Odisha 769008, India
autor
Bibliografia
  • [1] A. Adini, R.W. Clough. Analysis of Plate Bending by the Finite Element Method. Report submitted to the National Science Foundation. G7337, 1961.
  • [2] R.J. Melosh. Basis for derivation of matrices for the direct stiffness method. AIAA Journal, 1: 1631–7, 1963.
  • [3] M. Barik, M. Mukhopadhyay. Free flexural vibration analysis of arbitrary plates with arbitrary stiffeners. Journal of Vibration and Control, 5: 667–683, 1999.
  • [4] M. Barik, M. Mukhopadhyay. Finite element free flexural vibration analysis of arbitrary plates. Finite Elements in Analysis and Design, 29: 137–151, 1998.
  • [5] M. Barik. Finite element static, dynamic and stability analyses of arbitrary stiffened plates. Ph.D. Thesis, Ocean Engineering and Naval Architecture Department, Indian Institute of Technology, Kharagpur, 1999.
  • [6] O.K. Bedair. A contribution to the stability of stiffened plates under uniform compression. Computers & Struc-tures, 66(5): 535–570, 1998.
  • [7] C.J. Brown, A.L. Yettram. The elastic stability of stiffened plates using the conjugate load/displacement method. Computers & Structures, 23(3): 385–391, 1986.
  • [8] B.H. Coburn, Z. Wu, P.M. Weaver. Buckling analysis of stiffened variable angle tow panels. Composite Structures, 111: 259–270, 2014.
  • [9] P.E. Fenner, A. Watson. Finite element buckling analysis of stiffened plates with filleted junctions. Thin-Walled Structures, 59: 171–180, 2012.
  • [10] M.W. Guo, I.E. Harik, W.X. Ren. Buckling behavior of stiffened laminated plates. International Journal of Solids and Structures, 39(11): 3039–3055, 2002.
  • [11] C. Mittelstedt. Closed-form buckling analysis of stiffened composite plates and identification of minimum stiffener requirements. International Journal of Engineering Science, 46(10): 1011–1034, 2008.
  • [12] T. Mizusawa, T. Kajita, M. Naruoka. Buckling of skew plate structures using B-spline functions. International Journal for Numerical Methods in Engineering, 15(1): 87–96, 1980.
  • [13] M. Mukhopadhyay. Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, part I: consideration of bending displacements only. Journal of Sound and Vibration, 130(1): 27–39, 1989.
  • [14] M. Mukhopadhyay, A. Mukherjee. Finite element buckling analysis of stiffened plates. Computers & Structures, 34(6): 795–803, 1990.
  • [15] S. Panda, M. Barik. Finite element buckling analysis of thin plates with complicated geometry. International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, 867–871,2016.
  • [16] S.N. Patel, A.H. Sheikh. Buckling response of laminated composite stiffened plates subjected to partial in-plane edge loading. International Journal for Computational Methods in Engineering Science and Mechanics, 17(5–6):322–338, 2016.
  • [17] L.X. Peng, S. Kitipornchai, K.M. Liew. Analysis of rectangular stiffened plates under uniform lateral load based on FSDT and element-free Galerkin method. International Journal of Mechanical Sciences, 47(2): 251–276,2005.
  • [18] L.X. Peng, K.M. Liew, S. Kitipornchai. Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method. Journal of Sound and Vibration, 289(3): 421–449, 2006.
  • [19] S. Peng-Cheng, H. Dade, W. Zongmu. Static, vibration and stability analysis of stiffened plates using B-spline functions. Computers & Structures, 27(1): 73–78, 1987.
  • [20] K. Ramkumar, H. Kang. Finite element based investigation of buckling and vibration behaviour of thin walled box beams. Applied and Computational Mechanics, 7: 155–182, 2013.
  • [21] R. Rikards, A. Chate, O. Ozolinsh. Analysis for buckling and vibrations of composite stiffened shells and plates. Composite Structures, 51(4): 361–370, 2001.
  • [22] P. Shi, R.K. Kapania, C.Y. Dong. Vibration and buckling analysis of curvilinearly stiffened plates using finite element method. AIAA Journal, 53(5): 1319–1335, 2015.
  • [23] S.K. Singh, A. Chakrabarti. Buckling analysis of laminated composite plates using an efficient C0 FE model. Latin American Journal of Solids and Structures, 9(3): 1–13, 2012.
  • [24] A.K.L. Srivastava, P.K. Datta, A.H. Sheikh. Buckling and vibration of stiffened plates subjected to partial edge loading. International Journal of Mechanical Sciences, 45(1): 73–93, 2003.
  • [25] A.K.L. Srivastava, P.K. Datta, A.H. Sheikh. Dynamic instability of stiffened plates subjected to non-uniform harmonic in-plane edge loading. Journal of Sound and Vibration, 262(5): 1171–1189, 2003.
  • [26] A.Y. Tamijani, R.K. Kapania. Buckling and static analysis of curvilinearly stiffened plates using mesh-free method. AIAA Journal, 48(12): 2739–2751, 2010.
  • [27] S.M. Timoshenko, J.M. Gere. Theory of Elastic Stability, 2nd Edition, McGrawHill International, New York,1961.
  • [28] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, 4th Edition, McGraw-Hill, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cf12442a-93b1-463b-8b91-5d711b7a2ddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.