Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | R. 111, z. 6-B | 117--139
Tytuł artykułu

Test methods of concrete resistance to chloride ingress

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Metody badania odporności betonu na wnikanie chlorków
Języki publikacji
EN
Abstrakty
EN
The experimental methods for determination of concrete resistance to chlorides – both the chloride permeability test methods (NT Build 492 NordTest – Non-S teady State Migration Test, AASHTO T 277-ASTM C 1202 Test) and the methods for testing concrete resistance to surface scaling due to cyclic freezing and thawing in the presence of NaCl solution (deicing salts, saline sea water, etc.) (e.g. Slab Test according to CEN/TS 12390-9, based on the Borås method according to Swedish Standard SS 13 72 44) are presented in the paper. The Rapid Chloride Test – the method used "in situ" to determine the chloride ion content in concrete is also described.
PL
W artykule przedstawiono doświadczalne metody określenia odporności betonu na działanie chlorków – metody badania przepuszczalności chlorków (NT Build 492 NortTest – Test migracji chlorków przy nieustalonym przepływie, AASHTO T 277-ASTM C 1202 Test) oraz metody badania odporności betonu na powierzchniowe łuszczenie spowodowane cyklicznym zamrażaniem i odmrażaniem w obecności roztworu NaCl (soli odladzających, słonej wody morskiej itd.) (np. Slab Test według normy CEN/TS 12390-9, wzorowany na metodzie Borås według szwedzkiej normy SS 13 72 44). Opisano również Rapid Chloride Test – metodę "in situ" badania zawartości jonów chlorkowych w betonie.
Wydawca

Rocznik
Strony
117--139
Opis fizyczny
Bibliogr. 43 poz., wz., il., tab.
Twórcy
autor
  • Institute of Building Materials and Structures, Faculty of Civil Engineering, Cracow University of Technology
Bibliografia
  • [1] Andrade C., Calculation of chloride diffusion coefficients in concrete from ionic migration measurement, Cement and Concrete Research, Vol. 23, 1993, 724–742.
  • [2] Audenaert K., Yuan Q., De Schutter D., On the time dependency of the chloride migration coefficient in concrete, Construction and Building Materials, Vol. 24, 2010, 396–402.
  • [3] Baroghel Bouny V., Belin P., Maultzsch M., Henry D., AgNO3 spray test: advantages, weaknesses, and various applications to quantify chloride ingress into concrete, Part 2: Non-steady-state migration tests and chloride diffusion coefficients, Materials and Structures, No. 8, Vol. 40, 2007, 783–799.
  • [4] Bebłacz D., Kamiński P., Methodology of testing and assessment criteria of resistance of pavement concretes to de-icing salts, 3rd Conference “Concrete Days” (“Dni Betonu”), Wisła, Poland, 11–13 October, 2004, 804–821 (in Polish).
  • [5] Boos P., Giergiczny Z., Testing the frost resistance of concrete with different cement types – experience from laboratory and practice, Architecture Civil Engineering­Environment, The Silesian University of Technology, No. 2, 2010, 41–51.
  • [6] Bortz B.S., Salt-scaling durability of fly ash concrete, M.Sc. Thesis, Kansas State University, Manhattan, Kansas 2010.
  • [7] Brandt A.M., Cement based composites: materials, mechanical properties and performance, Taylor&Francis, 2009.
  • [8] Claisse P.A., Elsayad H.I., Ganjian E., Modelling the rapid chloride permeability test, Cement and Concrete Research, Vol. 40, 2010, 405–409.
  • [9] Flaga K., Diagnosis of concrete bridges, Bridges, No. 1, 2011, 48–53 (in Polish).
  • [10] Flaga K., In-situ test methods in the diagnosis of the state of concrete in engineering structures, 2nd Scientific and Technical Symposium on Durability of Concrete, Cracow, April 2008, 121–139 (in Polish).
  • [11] Giergiczny Z., Test methods for corrosion resistance of concrete to chloride and sulphate, 2nd Scientific and Technical Symposium on Durability of Concrete, Cracow, April 2008, 77–96 (in Polish).
  • [12] He F., Shi C., Yuan Q., Chen Ch., Zheng K., AgNO3 – based colorimetric methods for measurement of chloride penetration in concrete, Construction and Building Materials, Vol. 26, 2012, 1–8.
  • [13] Hearn N., Hooton R.D., Nokken M.R., Pore structure, permeability and penetration resistance characteristics of concrete, [in:] J.F. Lamond, J.H. Pielert (eds.), Significance of tests and properties of concrete & concrete making materials, Chapter 23, ASTM STP 169D, 2006, 238-252.
  • [14] Hooton R.D., Vassilev D., Deicer scaling resistance of concrete mixtures containing slag cement. Phase 2: Evaluation of different laboratory scaling test methods, Iowa State University/Federal Highway Administration, USA, Report No. DTFH61-06-H-00011 (Work Plan 24), July 2012.
  • [15] Jóźwiak­Niedźwiedzka D., Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete, RILEM TC 211-PAE Final Conference on Concrete in Aggressive Aqueous Environments. Performance, Testing and Modeling, Toulouse, France, 3–5 June, 2009, Vol. 2, 556–563.
  • [16] Jóźwiak­Niedźwiedzka D., Frost resistance test methods, 2nd Scientific and Technical Symposium on Durability of Concrete, Cracow, April 2008, 161–181 (in Polish).
  • [17] Kurdowski W., Cement and concrete chemistry, Polish Cement Association, Cracow/Polish Scientific Publishers (PWN), Warsaw 2010 (in Polish).
  • [18] Ramachandran V.S., Beaudoin J.J., Handbook of analytical techniques in concrete science and technology, Noyes Publications/William Andrew Publishing, New York 2001.
  • [19] Richardson M.G., Fundamentals of durable reinforced concrete, Spon Press, 2002.
  • [20] Shi C., Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C 1202 or ASSHTO T 277) results, Cement and Concrete Research, Vol. 34, 2004, 537–545.
  • [21] Sillanpää M., The effect of cracking on chloride diffusion in concrete, M.Sc. Thesis, Aalto University, Espoo, Finland 2010.
  • [22] Spiesz P., Brouwers H.J.H., Analysis of the theoretical model of the Rapid Chloride Migration test, 8th International Ph.D. Symposium in Civil Engineering, The Technical University of Denmark, Kgs. Lyngby. Denmark, 20–23 June, 2010, (online) homepage: http://josbrouwers.bwk.tue.nl/publications/Conference64.pdf, (access: 12.03.2014).
  • [23] Stanish K., Hooton R.D., Thomas M.D.A., A novel method for describing chloride ion transport due to an electrical gradient in concrete, Part 2: Experimental study, Cement and Concrete Research, Vol. 34, 2004, 51–57.
  • [24] Szweda Z., Zybura A., Analysis of chloride diffusion and migration in concrete, Part I: Theoretical model, Architecture – Civil Engineering – Environment, Silesian University of Technology, Vol. 5, No. 1, 2012, 47–54.
  • [25] Szweda Z., Zybura A., Analysis of chloride diffusion and migration in concrete, Part II: Experimental tests, Architecture – Civil Engineering – Environment, Silesian University of Technology, Vol. 5, No. 1, 2012, 55–62.
  • [26] Tang L., Chloride transport in concrete – Measurement and prediction, Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, Publication P-96:6, 2010.
  • [27] Tang L., Nilsson L.­O., Prediction of chloride penetration into concrete by using the computer program “ClinConc”, [in:] O.E. Gjørv, K. Sakai, N. Banthia (eds.), Concrete under severe conditions 2. Environment and loading, E & FN Spon, Vol. 1, 1998, 625–634.
  • [28] Tang L., Nilsson L.­O., Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, Vol. 89, 1992, 49–53.
  • [29] Tang L., Nilsson L.­O., Basheer P.A.M., Resistance of concrete to chloride ingress, Spon Press, 2011.
  • [30] Whiting D., Rapid determination of the chloride permeability of concrete, Federal Highway Administration, USA, Report No. FHWA/RD­81/119, August 1981.
  • [31] AASHTO T 277 (2007). Standard method of test for electrical indication of concrete’s ability to resist chloride ion penetration, AASHTO (American Association of State Highway and Transportation Officials), USA.
  • [32] ASTM C 672 (2012). Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals, ASTM (American Society for Testing and Materials), USA.
  • [33] ASTM C 1202 (2012). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, USA.
  • [34] CEN (European Committee for Standardization). CEN/TS 12390-9:2006. Testing hardened concrete – Part 9: Freeze-thaw resistance – Scaling (PKN­CEN/TS 12390-9:2007E – in Polish).
  • [35] EN 206-1:2000. Concrete – Part 1: Specification, performance, production and conformity (PN­EN 206-1:2003P – in Polish).
  • [36] EN 1338:2003/AC:2006. Concrete paving blocks. Requirements and test methods (PN­EN 1338:2005/AC:2007P – in Polish).
  • [37] EN 1339:2003/AC:2006. Concrete paving flags. Requirements and test methods (PN­EN 1339:2005/AC:2007P – in Polish).
  • [38] EN 1340:2003/AC:2006. Concrete kerb units. Requirements and test methods (PN­EN 1340:2004/AC:2007P – in Polish).
  • [39] NT BUILD 492 (1999). NordTest Method: Concrete, mortar and cement based repair materials: Chloride migration coefficient from non-steady-state migration experiments, Finland.
  • [40] http://www.crr.be/pdf/15/webpages/e03c.pdf (access: 12.03.2014).
  • [41] http://www.germann.org/Brochures/Catalog­NDT-2010.pdf (access: 12.03.2014).
  • [42] http://www.germann.org/TestSystems/PROOVEit/PROOVEit.pdf (access: 12.03.2014).
  • [43] http://www.uni-due.de/ibpm/projekte/CIF­eng.pdf (access: 12.03.2014).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-cee52bda-ca19-4eff-8e39-b4f939aa0592
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.